Data-Driven Variable Decomposition for Treatment Effect Estimation

观察研究 混淆 因果推理 符号 差异(会计) 推论 数学 变量(数学) 统计 倾向得分匹配 计算机科学 算法 计量经济学 人工智能 数学分析 业务 会计 算术
作者
Kun Kuang,Peng Cui,Hao Zou,Bo Li,Jianrong Tao,Fei Wu,Shiqiang Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:34 (5): 2120-2134 被引量:12
标识
DOI:10.1109/tkde.2020.3006898
摘要

Causal Inference plays an important role in decision making in many fields, such as social marketing, healthcare, and public policy. One fundamental problem in causal inference is the treatment effect estimation in observational studies when variables are confounded. Controlling for confounding effects is generally handled by propensity score. But it treats all observed variables as confounders and ignores the adjustment variables, which have no influence on treatment but are predictive of the outcome. Recently, it has been demonstrated that the adjustment variables are effective in reducing the variance of the estimated treatment effect. However, how to automatically separate the confounders and adjustment variables in observational studies is still an open problem, especially in the scenarios of high dimensional variables, which are common in the big data era. In this paper, we first propose a Data-Driven Variable Decomposition (D $^2$ VD) algorithm, which can 1) automatically separate confounders and adjustment variables with a data-driven approach, and 2) simultaneously estimate treatment effect in observational studies with high dimensional variables. Under standard assumptions, we theoretically prove that our D $^2$ VD algorithm can unbiased estimate treatment effect and achieve lower variance than traditional propensity score based methods. Moreover, to address the challenges from high-dimensional variables and nonlinear, we extend our D $^2$ VD to a non-linear version, namely Nonlinear-D $^2$ VD (N-D $^2$ VD) algorithm. To validate the effectiveness of our proposed algorithms, we conduct extensive experiments on both synthetic and real-world datasets. The experimental results demonstrate that our D $^2$ VD and N-D $^2$ VD algorithms can automatically separate the variables precisely, and estimate treatment effect more accurately and with tighter confidence intervals than the state-of-the-art methods. We also demonstrated that the top-ranked features by our algorithm have the best prediction performance on an online advertising dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的绿兰完成签到,获得积分10
刚刚
周宇飞完成签到 ,获得积分10
刚刚
洋溢完成签到,获得积分10
刚刚
年轻的路人完成签到,获得积分10
1秒前
英姑应助天真的雅绿采纳,获得10
2秒前
狮子卷卷完成签到,获得积分10
2秒前
Vi完成签到 ,获得积分10
3秒前
整齐冬瓜发布了新的文献求助10
3秒前
XiaohuLee发布了新的文献求助10
3秒前
ludong_0应助油炸丸子采纳,获得10
3秒前
章鱼完成签到,获得积分10
3秒前
努力科研的博士僧完成签到,获得积分10
3秒前
3秒前
爆米花应助青青草采纳,获得10
3秒前
Ethan完成签到,获得积分10
4秒前
乐乐应助过儿采纳,获得30
4秒前
大萌完成签到,获得积分10
4秒前
4秒前
mymai11完成签到,获得积分10
6秒前
orixero应助王敬顺采纳,获得10
6秒前
AronHUANG完成签到,获得积分10
6秒前
tks完成签到,获得积分10
6秒前
眼睛大雨筠应助萧水白采纳,获得30
6秒前
时尚的冰棍儿完成签到 ,获得积分10
6秒前
whiteside完成签到,获得积分10
6秒前
Raojas完成签到,获得积分10
7秒前
赘婿应助SweetyANN采纳,获得10
7秒前
loey完成签到,获得积分10
7秒前
Riggle G完成签到,获得积分10
7秒前
8秒前
直球科研完成签到 ,获得积分10
8秒前
九月完成签到,获得积分10
9秒前
小鱼完成签到,获得积分10
9秒前
Abi完成签到,获得积分10
9秒前
白斯特完成签到,获得积分10
10秒前
121关闭了121文献求助
10秒前
天天喝咖啡完成签到,获得积分10
10秒前
10秒前
RON发布了新的文献求助10
11秒前
蜂鸟完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874