Data-Driven Variable Decomposition for Treatment Effect Estimation

观察研究 混淆 因果推理 符号 差异(会计) 推论 数学 变量(数学) 统计 倾向得分匹配 计算机科学 算法 计量经济学 人工智能 数学分析 业务 会计 算术
作者
Kun Kuang,Peng Cui,Hao Zou,Bo Li,Jianrong Tao,Fei Wu,Shiqiang Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2120-2134 被引量:12
标识
DOI:10.1109/tkde.2020.3006898
摘要

Causal Inference plays an important role in decision making in many fields, such as social marketing, healthcare, and public policy. One fundamental problem in causal inference is the treatment effect estimation in observational studies when variables are confounded. Controlling for confounding effects is generally handled by propensity score. But it treats all observed variables as confounders and ignores the adjustment variables, which have no influence on treatment but are predictive of the outcome. Recently, it has been demonstrated that the adjustment variables are effective in reducing the variance of the estimated treatment effect. However, how to automatically separate the confounders and adjustment variables in observational studies is still an open problem, especially in the scenarios of high dimensional variables, which are common in the big data era. In this paper, we first propose a Data-Driven Variable Decomposition (D $^2$ VD) algorithm, which can 1) automatically separate confounders and adjustment variables with a data-driven approach, and 2) simultaneously estimate treatment effect in observational studies with high dimensional variables. Under standard assumptions, we theoretically prove that our D $^2$ VD algorithm can unbiased estimate treatment effect and achieve lower variance than traditional propensity score based methods. Moreover, to address the challenges from high-dimensional variables and nonlinear, we extend our D $^2$ VD to a non-linear version, namely Nonlinear-D $^2$ VD (N-D $^2$ VD) algorithm. To validate the effectiveness of our proposed algorithms, we conduct extensive experiments on both synthetic and real-world datasets. The experimental results demonstrate that our D $^2$ VD and N-D $^2$ VD algorithms can automatically separate the variables precisely, and estimate treatment effect more accurately and with tighter confidence intervals than the state-of-the-art methods. We also demonstrated that the top-ranked features by our algorithm have the best prediction performance on an online advertising dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppp完成签到,获得积分10
刚刚
唠叨的白萱完成签到,获得积分10
1秒前
傲娇的凡旋完成签到,获得积分10
1秒前
fusheng完成签到 ,获得积分10
2秒前
2秒前
兔子完成签到,获得积分20
3秒前
Zzzzzzzzzzz完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
6秒前
谭谨川发布了新的文献求助10
6秒前
cheung完成签到,获得积分10
6秒前
乌日汗完成签到,获得积分10
7秒前
7秒前
7秒前
公茂源完成签到 ,获得积分10
8秒前
共享精神应助spurs17采纳,获得30
9秒前
BONBON发布了新的文献求助10
10秒前
liuqian发布了新的文献求助10
10秒前
浮生完成签到 ,获得积分10
10秒前
奔跑的青霉素完成签到 ,获得积分10
10秒前
linxue发布了新的文献求助10
10秒前
科研通AI5应助Annie采纳,获得10
10秒前
11秒前
执着发布了新的文献求助20
11秒前
原鑫完成签到,获得积分10
11秒前
寒涛先生完成签到,获得积分20
12秒前
13秒前
科研通AI5应助呆萌的元枫采纳,获得30
13秒前
13秒前
gzsy发布了新的文献求助10
13秒前
15秒前
17秒前
17秒前
哄不好的南完成签到,获得积分10
17秒前
makus完成签到,获得积分10
17秒前
西西歪完成签到,获得积分10
19秒前
19秒前
深情安青应助BONBON采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808