Data-Driven Variable Decomposition for Treatment Effect Estimation

观察研究 混淆 因果推理 符号 差异(会计) 推论 数学 变量(数学) 统计 倾向得分匹配 计算机科学 算法 计量经济学 人工智能 数学分析 业务 会计 算术
作者
Kun Kuang,Peng Cui,Hao Zou,Bo Li,Jianrong Tao,Fei Wu,Shiqiang Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2120-2134 被引量:12
标识
DOI:10.1109/tkde.2020.3006898
摘要

Causal Inference plays an important role in decision making in many fields, such as social marketing, healthcare, and public policy. One fundamental problem in causal inference is the treatment effect estimation in observational studies when variables are confounded. Controlling for confounding effects is generally handled by propensity score. But it treats all observed variables as confounders and ignores the adjustment variables, which have no influence on treatment but are predictive of the outcome. Recently, it has been demonstrated that the adjustment variables are effective in reducing the variance of the estimated treatment effect. However, how to automatically separate the confounders and adjustment variables in observational studies is still an open problem, especially in the scenarios of high dimensional variables, which are common in the big data era. In this paper, we first propose a Data-Driven Variable Decomposition (D $^2$ VD) algorithm, which can 1) automatically separate confounders and adjustment variables with a data-driven approach, and 2) simultaneously estimate treatment effect in observational studies with high dimensional variables. Under standard assumptions, we theoretically prove that our D $^2$ VD algorithm can unbiased estimate treatment effect and achieve lower variance than traditional propensity score based methods. Moreover, to address the challenges from high-dimensional variables and nonlinear, we extend our D $^2$ VD to a non-linear version, namely Nonlinear-D $^2$ VD (N-D $^2$ VD) algorithm. To validate the effectiveness of our proposed algorithms, we conduct extensive experiments on both synthetic and real-world datasets. The experimental results demonstrate that our D $^2$ VD and N-D $^2$ VD algorithms can automatically separate the variables precisely, and estimate treatment effect more accurately and with tighter confidence intervals than the state-of-the-art methods. We also demonstrated that the top-ranked features by our algorithm have the best prediction performance on an online advertising dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友完成签到 ,获得积分10
5秒前
丹妮完成签到 ,获得积分10
7秒前
QCB完成签到 ,获得积分10
8秒前
zokor完成签到 ,获得积分10
9秒前
微卫星不稳定完成签到 ,获得积分0
10秒前
sunny完成签到 ,获得积分10
21秒前
Dawn完成签到 ,获得积分10
21秒前
Wang完成签到 ,获得积分10
22秒前
EE完成签到 ,获得积分10
38秒前
大轩完成签到 ,获得积分10
48秒前
鲲之小完成签到 ,获得积分10
49秒前
59秒前
烤鸭完成签到 ,获得积分10
1分钟前
xkhxh完成签到 ,获得积分10
1分钟前
1分钟前
kean1943完成签到,获得积分10
1分钟前
在水一方完成签到 ,获得积分0
1分钟前
ljssll完成签到 ,获得积分10
1分钟前
kaier完成签到 ,获得积分10
1分钟前
小正完成签到,获得积分10
1分钟前
李爱国应助guan采纳,获得10
2分钟前
匆匆赶路人完成签到 ,获得积分10
2分钟前
wangfeng完成签到 ,获得积分10
2分钟前
开心幻悲完成签到 ,获得积分10
2分钟前
充满怪兽的世界完成签到,获得积分10
2分钟前
2分钟前
2分钟前
快乐的完成签到 ,获得积分10
2分钟前
建丰完成签到,获得积分10
2分钟前
2分钟前
没用的三轮完成签到,获得积分10
3分钟前
生动的如花完成签到,获得积分10
3分钟前
白华苍松发布了新的文献求助20
3分钟前
香樟遗完成签到 ,获得积分10
3分钟前
泌尿小周完成签到 ,获得积分10
3分钟前
icewuwu完成签到,获得积分10
3分钟前
Orange应助白华苍松采纳,获得10
3分钟前
tingyeh完成签到,获得积分10
4分钟前
体贴问丝完成签到 ,获得积分10
4分钟前
黑大侠完成签到 ,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790511
关于积分的说明 7795445
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176