EEG-Based Emotion Classification Using Spiking Neural Networks

计算机科学 脑电图 模式识别(心理学) 人工智能 快速傅里叶变换 唤醒 价(化学) 离散小波变换 人工神经网络 尖峰神经网络 情绪分类 语音识别 机器学习 小波变换 小波 算法 心理学 神经科学 物理 量子力学 精神科
作者
Yuling Luo,Qiang Fu,Juntao Xie,Yunbai Qin,Guopei Wu,Junxiu Liu,Frank Jiang,Yi Cao,Xuemei Ding
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 46007-46016 被引量:126
标识
DOI:10.1109/access.2020.2978163
摘要

A novel method of using the spiking neural networks (SNNs) and the electroencephalograph (EEG) processing techniques to recognize emotion states is proposed in this paper. Three algorithms including discrete wavelet transform (DWT), variance and fast Fourier transform (FFT) are employed to extract the EEG signals, which are further taken by the SNN for the emotion classification. Two datasets, i.e., DEAP and SEED, are used to validate the proposed method. For the former dataset, the emotional states include arousal, valence, dominance and liking where each state is denoted as either high or low status. For the latter dataset, the emotional states are divided into three categories (negative, positive and neutral). Experimental results show that by using the variance data processing technique and SNN, the emotion states of arousal, valence, dominance and liking can be classified with accuracies of 74%, 78%, 80% and 86.27% for the DEAP dataset, and an overall accuracy is 96.67% for the SEED dataset, which outperform the FFT and DWT processing methods. In the meantime, this work achieves a better emotion classification performance than the benchmarking approaches, and also demonstrates the advantages of using SNN for the emotion state classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
TCXXS发布了新的文献求助10
刚刚
顾矜应助魔幻的向松采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
欢喜的酒窝完成签到 ,获得积分20
2秒前
白羊发布了新的文献求助10
3秒前
冷静的毛豆完成签到,获得积分10
3秒前
林莹完成签到,获得积分10
3秒前
Ava应助侯mm采纳,获得10
3秒前
3秒前
weiweiwei发布了新的文献求助10
4秒前
4秒前
xww发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
chi发布了新的文献求助10
6秒前
科研混子发布了新的文献求助10
7秒前
LLeaf发布了新的文献求助10
7秒前
xkun完成签到 ,获得积分10
7秒前
7秒前
研友_VZG7GZ应助tad81采纳,获得10
7秒前
8秒前
liwu完成签到,获得积分10
8秒前
8秒前
脑洞疼应助小刺采纳,获得10
8秒前
8秒前
坚定的跳跳糖完成签到 ,获得积分10
9秒前
暮光之城发布了新的文献求助10
9秒前
9秒前
666发布了新的文献求助10
9秒前
桐桐应助hhan采纳,获得10
10秒前
情怀应助yy采纳,获得10
11秒前
大模型应助一条龙采纳,获得10
11秒前
12秒前
酷炫的背包完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126