Doubled Thermoelectric Figure of Merit in p-Type β-FeSi2 via Synergistically Optimizing Electrical and Thermal Transports

材料科学 热电效应 热电材料 接受者 热稳定性 功勋 热导率 大气温度范围 格子(音乐) 凝聚态物理 热的 兴奋剂 电阻率和电导率 光电子学 热力学 化学工程 复合材料 电气工程 物理 工程类 声学
作者
Xiaolong Du,Pengfei Qiu,Jun Chai,Tao Mao,Ping Hu,Jiong Yang,Yi‐Yang Sun,Xun Shi,Lidong Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (11): 12901-12909 被引量:26
标识
DOI:10.1021/acsami.0c00321
摘要

β-FeSi2 has long been investigated as a promising thermoelectric (TE) material working at high temperatures due to its combining features of environmental friendliness, good thermal stability, and strong oxidation resistance. However, the real application of β-FeSi2 is still limited by its low TE figure of merit (zT). In this study, nearly doubled zT in p-type β-FeSi2 has been achieved via synergistically optimizing electrical and thermal transports. Based on the first-principles calculations, Al with shallow acceptor transition level and high carrier donation efficiency is chosen to dope β-FeSi2. Significantly improved electrical transport, particularly in the low temperature range, has been obtained in the Al-doped β-FeSi2 system. The power factor for FeSi1.96Al0.04 at 300 K is even higher than that of p-type β-FeSi2-based compounds reported previously at high temperatures. By alloying β-FeSi2 with Os at the Fe sites, we further lower the lattice thermal conductivity. Fe0.80Os0.20Si1.96Al0.04 possesses the lowest lattice thermal conductivity among the β-FeSi2 compounds prepared by the equilibrium method. Finally, a record-high zT value of 0.35 is obtained for p-type Fe0.80Os0.20Si1.96Al0.04. This study is expected to accelerate the application of β-FeSi2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liuwei采纳,获得10
刚刚
aaefv完成签到,获得积分10
刚刚
小小菜鸟发布了新的文献求助10
刚刚
深情安青应助123采纳,获得10
刚刚
赫初晴完成签到 ,获得积分10
刚刚
平淡的亦丝应助明研采纳,获得20
刚刚
2秒前
库外发布了新的文献求助10
3秒前
汉堡包应助清新的冷松采纳,获得10
3秒前
从心应助LiShin采纳,获得10
3秒前
帅气的听莲完成签到,获得积分10
3秒前
英姑应助Areslcy采纳,获得10
3秒前
善学以致用应助zxz采纳,获得10
4秒前
whatever应助luoshi采纳,获得10
5秒前
5秒前
科研通AI5应助徐徐采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
shouyu29应助MADKAI采纳,获得10
6秒前
Lucas应助MADKAI采纳,获得10
6秒前
Vii应助MADKAI采纳,获得10
6秒前
李爱国应助MADKAI采纳,获得10
6秒前
李健应助MADKAI采纳,获得10
6秒前
烟花应助MADKAI采纳,获得20
6秒前
香蕉觅云应助MADKAI采纳,获得10
6秒前
科研通AI2S应助MADKAI采纳,获得10
6秒前
Singularity应助MADKAI采纳,获得10
6秒前
7秒前
7秒前
赘婿应助GGZ采纳,获得10
7秒前
阿盛完成签到,获得积分10
7秒前
7秒前
怕孤单的含羞草完成签到 ,获得积分10
8秒前
Muuu发布了新的文献求助10
8秒前
仁爱的乐枫完成签到,获得积分10
9秒前
9秒前
金润完成签到,获得积分10
10秒前
ZZ完成签到,获得积分10
10秒前
AteeqBaloch发布了新的文献求助10
11秒前
PaulLao完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762