Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network

计算机科学 人工智能 卷积神经网络 特征提取 边距(机器学习) 像素 端到端原则 计算机视觉 人工神经网络 模式识别(心理学) 代表(政治) 深度学习 任务(项目管理) 特征(语言学) 遥感 机器学习 地质学 哲学 经济 管理 法学 政治 语言学 政治学
作者
Guangliang Cheng,Ying Wang,Shibiao Xu,Hongzhen Wang,Shiming Xiang,Chunhong Pan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (6): 3322-3337 被引量:416
标识
DOI:10.1109/tgrs.2017.2669341
摘要

Accurate road detection and centerline extraction from very high resolution (VHR) remote sensing imagery are of central importance in a wide range of applications. Due to the complex backgrounds and occlusions of trees and cars, most road detection methods bring in the heterogeneous segments; besides for the centerline extraction task, most current approaches fail to extract a wonderful centerline network that appears smooth, complete, as well as single-pixel width. To address the above-mentioned complex issues, we propose a novel deep model, i.e., a cascaded end-to-end convolutional neural network (CasNet), to simultaneously cope with the road detection and centerline extraction tasks. Specifically, CasNet consists of two networks. One aims at the road detection task, whose strong representation ability is well able to tackle the complex backgrounds and occlusions of trees and cars. The other is cascaded to the former one, making full use of the feature maps produced formerly, to obtain the good centerline extraction. Finally, a thinning algorithm is proposed to obtain smooth, complete, and single-pixel width road centerline network. Extensive experiments demonstrate that CasNet outperforms the state-of-the-art methods greatly in learning quality and learning speed. That is, CasNet exceeds the comparing methods by a large margin in quantitative performance, and it is nearly 25 times faster than the comparing methods. Moreover, as another contribution, a large and challenging road centerline data set for the VHR remote sensing image will be publicly available for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZMJ困困ZJY发布了新的文献求助10
刚刚
温如军发布了新的文献求助200
1秒前
科研通AI2S应助俊逸艳一采纳,获得10
1秒前
3秒前
3秒前
河畔发布了新的文献求助10
3秒前
4秒前
丘比特应助Yorshka采纳,获得10
5秒前
5秒前
monned完成签到,获得积分10
7秒前
愉快凌晴完成签到,获得积分10
7秒前
xinni完成签到,获得积分10
7秒前
8秒前
8秒前
浮游应助geopotter采纳,获得10
9秒前
LL完成签到 ,获得积分10
10秒前
10秒前
遗忘发布了新的文献求助10
10秒前
heyudian发布了新的文献求助10
12秒前
13秒前
13秒前
Owen应助此间少年郎采纳,获得10
14秒前
15秒前
77发布了新的文献求助10
15秒前
凡迪亚比发布了新的文献求助10
16秒前
空白发布了新的文献求助30
16秒前
大模型应助xinni采纳,获得10
16秒前
努力发光的GT完成签到,获得积分10
17秒前
20秒前
包子完成签到,获得积分10
20秒前
22秒前
22秒前
邓晓霞完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
小二郎应助朴素的凡梦采纳,获得10
27秒前
28秒前
Violet发布了新的文献求助10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050331
求助须知:如何正确求助?哪些是违规求助? 4278065
关于积分的说明 13335304
捐赠科研通 4092980
什么是DOI,文献DOI怎么找? 2239988
邀请新用户注册赠送积分活动 1246687
关于科研通互助平台的介绍 1175504