Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network

计算机科学 人工智能 卷积神经网络 特征提取 边距(机器学习) 像素 端到端原则 计算机视觉 人工神经网络 模式识别(心理学) 代表(政治) 深度学习 任务(项目管理) 特征(语言学) 遥感 机器学习 地质学 哲学 经济 管理 法学 政治 语言学 政治学
作者
Guangliang Cheng,Ying Wang,Shibiao Xu,Hongzhen Wang,Shiming Xiang,Chunhong Pan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (6): 3322-3337 被引量:409
标识
DOI:10.1109/tgrs.2017.2669341
摘要

Accurate road detection and centerline extraction from very high resolution (VHR) remote sensing imagery are of central importance in a wide range of applications. Due to the complex backgrounds and occlusions of trees and cars, most road detection methods bring in the heterogeneous segments; besides for the centerline extraction task, most current approaches fail to extract a wonderful centerline network that appears smooth, complete, as well as single-pixel width. To address the above-mentioned complex issues, we propose a novel deep model, i.e., a cascaded end-to-end convolutional neural network (CasNet), to simultaneously cope with the road detection and centerline extraction tasks. Specifically, CasNet consists of two networks. One aims at the road detection task, whose strong representation ability is well able to tackle the complex backgrounds and occlusions of trees and cars. The other is cascaded to the former one, making full use of the feature maps produced formerly, to obtain the good centerline extraction. Finally, a thinning algorithm is proposed to obtain smooth, complete, and single-pixel width road centerline network. Extensive experiments demonstrate that CasNet outperforms the state-of-the-art methods greatly in learning quality and learning speed. That is, CasNet exceeds the comparing methods by a large margin in quantitative performance, and it is nearly 25 times faster than the comparing methods. Moreover, as another contribution, a large and challenging road centerline data set for the VHR remote sensing image will be publicly available for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wellyou完成签到,获得积分10
刚刚
mint完成签到,获得积分10
2秒前
afli完成签到 ,获得积分0
5秒前
6秒前
Yy完成签到 ,获得积分10
9秒前
Nayvue发布了新的文献求助10
11秒前
feng完成签到,获得积分10
11秒前
淡淡的小蘑菇完成签到 ,获得积分10
14秒前
G_Serron完成签到,获得积分10
15秒前
swordshine完成签到,获得积分10
15秒前
Anonymous完成签到,获得积分10
19秒前
medzhou完成签到,获得积分10
23秒前
儒雅的千秋完成签到,获得积分10
31秒前
普鲁卡因发布了新的文献求助10
34秒前
小雯完成签到,获得积分10
35秒前
搞怪梦寒完成签到,获得积分20
36秒前
喵了个咪完成签到 ,获得积分10
37秒前
mc完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
42秒前
43秒前
43秒前
虚幻谷波完成签到,获得积分10
45秒前
ruochenzu发布了新的文献求助10
48秒前
小马甲应助搞怪梦寒采纳,获得10
50秒前
firewood完成签到 ,获得积分10
51秒前
天天快乐应助普鲁卡因采纳,获得10
53秒前
orixero应助NXK采纳,获得10
53秒前
bjr完成签到 ,获得积分10
55秒前
研友_LwlAgn完成签到,获得积分10
59秒前
陈昊完成签到,获得积分10
1分钟前
1分钟前
tian发布了新的文献求助10
1分钟前
1分钟前
1分钟前
龙舞星完成签到,获得积分10
1分钟前
1分钟前
王涉发布了新的文献求助10
1分钟前
普鲁卡因发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
柚子完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022