亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Road Detection and Centerline Extraction via Cascaded End-to-End Convolutional Neural Network

计算机科学 人工智能 卷积神经网络 特征提取 边距(机器学习) 像素 端到端原则 计算机视觉 人工神经网络 模式识别(心理学) 代表(政治) 深度学习 任务(项目管理) 特征(语言学) 遥感 机器学习 地质学 哲学 经济 管理 法学 政治 语言学 政治学
作者
Guangliang Cheng,Ying Wang,Shibiao Xu,Hongzhen Wang,Shiming Xiang,Chunhong Pan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:55 (6): 3322-3337 被引量:416
标识
DOI:10.1109/tgrs.2017.2669341
摘要

Accurate road detection and centerline extraction from very high resolution (VHR) remote sensing imagery are of central importance in a wide range of applications. Due to the complex backgrounds and occlusions of trees and cars, most road detection methods bring in the heterogeneous segments; besides for the centerline extraction task, most current approaches fail to extract a wonderful centerline network that appears smooth, complete, as well as single-pixel width. To address the above-mentioned complex issues, we propose a novel deep model, i.e., a cascaded end-to-end convolutional neural network (CasNet), to simultaneously cope with the road detection and centerline extraction tasks. Specifically, CasNet consists of two networks. One aims at the road detection task, whose strong representation ability is well able to tackle the complex backgrounds and occlusions of trees and cars. The other is cascaded to the former one, making full use of the feature maps produced formerly, to obtain the good centerline extraction. Finally, a thinning algorithm is proposed to obtain smooth, complete, and single-pixel width road centerline network. Extensive experiments demonstrate that CasNet outperforms the state-of-the-art methods greatly in learning quality and learning speed. That is, CasNet exceeds the comparing methods by a large margin in quantitative performance, and it is nearly 25 times faster than the comparing methods. Moreover, as another contribution, a large and challenging road centerline data set for the VHR remote sensing image will be publicly available for further studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
Willow完成签到,获得积分10
13秒前
16秒前
23秒前
27秒前
Criminology34应助自觉的电脑采纳,获得10
34秒前
38秒前
39秒前
42秒前
47秒前
科研通AI6.1应助畅快甜瓜采纳,获得10
48秒前
53秒前
1分钟前
1分钟前
1分钟前
zxg完成签到 ,获得积分10
1分钟前
寒冷念文发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助努力采纳,获得10
1分钟前
1分钟前
1分钟前
Orange应助寒冷念文采纳,获得10
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助Willow采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI6.1应助wwwwyt采纳,获得10
2分钟前
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542