材料科学
石墨烯
化学工程
氧化石墨
聚酰胺
石墨
还原剂
蒸馏水
核化学
化学
复合材料
纳米技术
色谱法
工程类
作者
M. Hasani,Majid Montazer
标识
DOI:10.1080/00405000.2017.1286700
摘要
Here, graphene oxide (GO) was treated on the cellulosic/polyamide fabric reduced with various inorganic and organic compounds and compared the color changes, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, electrical resistivity, antibacterial/antifungal and ultraviolet protection properties. The graphite oxide was first synthesized using graphite and sonicated to obtain GO. It was then dissolved in distilled water along with cetyltrimethylammonium bromide (CTAB) to prepare a stable solution for long-time adsorbing more and uniform GO on cellulosic/polyamide fabric through exhaustion method. The GO-treated fabric was reduced to reduced graphene oxide (rGO) with inorganic and organic reducing agents including sodium dithionite with and without sodium hydroxide and dopamine hydrochloride at various temperatures. More fabricated GO reduced to rGO at higher temperature using dopamine produced lower electrical resistance. The antimicrobial activities of various samples were tested against two Gram-negative bacteria, E. coli and P. aeruginosa, two Gram-positive bacteria, S. aureus and E. faecalis and one eukaryotic fungus C. albicans. Ultraviolet protection was examined through reflectance spectra showed no UV transmittance from most of the treated fabrics. Further, CTAB was effective to load more GO on the fabric improved electrical resistance and higher antibacterial properties using both reducing agents.
科研通智能强力驱动
Strongly Powered by AbleSci AI