生物相容性
自愈水凝胶
肿胀 的
丙烯酸
生物医学工程
化学
伤口愈合
纤维素
材料科学
真皮成纤维细胞
成纤维细胞
高分子化学
复合材料
体外
外科
单体
有机化学
生物化学
医学
聚合物
作者
Najwa Mohamad,Fhataheyah Buang,Azwan Mat Lazim,Naveed Ahmad,Claire Martin,Mohd Cairul Iqbal Mohd Amin
摘要
The use of bacterial cellulose (BC)-based hydrogel has been gaining attention owing to its biocompatibility and biodegradability. This study was designed to investigate the effect of radiation doses and acrylic acid (AA) composition on in vitro and in vivo biocompatibility of BC/AA as wound dressing materials. Physical properties of the hydrogel, that is, thickness, adhesiveness, rate of water vapor transmission, and swelling were measured. Moreover, the effect of these parameters on skin irritation and sensitization, blood compatibility, and cytotoxicity was studied. Increased AA content and irradiation doses increased the thickness, crosslinking density, and improved the mechanical properties of the hydrogel, but reduced its adhesiveness. The swelling capacity of the hydrogel increased significantly with a decrease in the AA composition in simulated wound fluid. The water vapor permeability of polymeric hydrogels was in the range of 2035-2666 [g/(m-2 day-1 )]. Dermal irritation and sensitization test demonstrated that the hydrogel was nonirritant and nonallergic. The BC/AA hydrogel was found to be nontoxic to primary human dermal fibroblast skin cells with viability >88% and was found to be biocompatible with blood with a low hemolytic index (0.80-1.30%). Collectively, these results indicate that these hydrogels have the potential to be used as wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2553-2564, 2017.
科研通智能强力驱动
Strongly Powered by AbleSci AI