Pareto-optimal Community Search on Large Bipartite Graphs

二部图 计算机科学 理论计算机科学 帕累托原理 算法 数学 数学优化 图形
作者
Yuting Zhang,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1145/3459637.3482282
摘要

In many real-world applications, bipartite graphs are naturally used to model relationships between two types of entities. Community discovery over bipartite graphs is a fundamental problem and has attracted much attention recently. However, all existing studies overlook the weight (e.g., influence or importance) of vertices in forming the community, thus missing useful properties of the community. In this paper, we propose a novel cohesive subgraph model named Pareto-optimal (α β), which is the first to consider both structure cohesiveness and weight of vertices on bipartite graphs. The proposed Pareto-optimal (α β) model follows the concept of (α, β)-core by imposing degree constraints for each type of vertices, and integrates the Pareto-optimality in modelling the weight information from two different types of vertices. An online query algorithm is developed to retrieve Pareto-optimal (α β) with the time complexity of O(p. m) where p is the number of resulting communities, and m is the number of edges in the bipartite graph G. To support efficient query processing over large graphs, we also develop index-based approaches. A complete index i is proposed, and the query algorithm based on i achieves linear query processing time regarding the result size (i.e., the algorithm is optimal). Nevertheless, the index i incurs prohibitively expensive space complexity. To strike a balance between query efficiency and space complexity, a space-efficient compact index 𝕀 is proposed. Computation-sharing strategies are devised to improve the efficiency of the index construction process for the index 𝕀. Extensive experiments on 9 real-world graphs validate both the effectiveness and the efficiency of our query processing algorithms and indexing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的南晴完成签到,获得积分10
刚刚
ArkZ完成签到 ,获得积分10
2秒前
科研通AI2S应助渊澈采纳,获得10
2秒前
3秒前
淋山河完成签到,获得积分10
4秒前
nianshu完成签到 ,获得积分0
4秒前
vv应助qrt采纳,获得10
4秒前
有血条就敢上完成签到 ,获得积分10
5秒前
5秒前
传统的大白完成签到,获得积分10
5秒前
6秒前
华仔应助旺阿旺采纳,获得10
6秒前
桐月十六发布了新的文献求助10
7秒前
lo发布了新的文献求助10
9秒前
香锅不要辣完成签到 ,获得积分10
10秒前
MCRong应助明亮小馒头采纳,获得20
10秒前
10秒前
王小西完成签到,获得积分10
10秒前
隐形曼青应助FGGFGGU采纳,获得10
11秒前
Radarax发布了新的文献求助10
11秒前
13秒前
13秒前
百事可乐完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
16秒前
断棍豪斯完成签到,获得积分10
16秒前
香菜碗里来完成签到,获得积分10
17秒前
完美世界应助百事可乐采纳,获得30
17秒前
18秒前
June发布了新的文献求助10
18秒前
Suntiger完成签到,获得积分10
18秒前
旺阿旺发布了新的文献求助10
19秒前
纳米发布了新的文献求助10
19秒前
阡陌花开发布了新的文献求助10
19秒前
20秒前
20秒前
科研通AI6应助大耳朵图图采纳,获得30
20秒前
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379319
求助须知:如何正确求助?哪些是违规求助? 4503737
关于积分的说明 14016376
捐赠科研通 4412441
什么是DOI,文献DOI怎么找? 2423840
邀请新用户注册赠送积分活动 1416678
关于科研通互助平台的介绍 1394230