Pareto-optimal Community Search on Large Bipartite Graphs

二部图 计算机科学 理论计算机科学 帕累托原理 算法 数学 数学优化 图形
作者
Yuting Zhang,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1145/3459637.3482282
摘要

In many real-world applications, bipartite graphs are naturally used to model relationships between two types of entities. Community discovery over bipartite graphs is a fundamental problem and has attracted much attention recently. However, all existing studies overlook the weight (e.g., influence or importance) of vertices in forming the community, thus missing useful properties of the community. In this paper, we propose a novel cohesive subgraph model named Pareto-optimal (α β), which is the first to consider both structure cohesiveness and weight of vertices on bipartite graphs. The proposed Pareto-optimal (α β) model follows the concept of (α, β)-core by imposing degree constraints for each type of vertices, and integrates the Pareto-optimality in modelling the weight information from two different types of vertices. An online query algorithm is developed to retrieve Pareto-optimal (α β) with the time complexity of O(p. m) where p is the number of resulting communities, and m is the number of edges in the bipartite graph G. To support efficient query processing over large graphs, we also develop index-based approaches. A complete index i is proposed, and the query algorithm based on i achieves linear query processing time regarding the result size (i.e., the algorithm is optimal). Nevertheless, the index i incurs prohibitively expensive space complexity. To strike a balance between query efficiency and space complexity, a space-efficient compact index 𝕀 is proposed. Computation-sharing strategies are devised to improve the efficiency of the index construction process for the index 𝕀. Extensive experiments on 9 real-world graphs validate both the effectiveness and the efficiency of our query processing algorithms and indexing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WJ完成签到,获得积分10
刚刚
李健应助侦察兵采纳,获得10
1秒前
无花果应助子川采纳,获得10
2秒前
2秒前
爆米花应助龙歪歪采纳,获得10
4秒前
5秒前
5秒前
xxxqqq完成签到,获得积分10
6秒前
虚拟的觅山完成签到,获得积分10
7秒前
slj完成签到,获得积分10
8秒前
科研爱好者完成签到 ,获得积分10
8秒前
9秒前
ywang发布了新的文献求助10
10秒前
koial完成签到 ,获得积分10
11秒前
苏卿应助小xy采纳,获得10
11秒前
侦察兵发布了新的文献求助10
13秒前
14秒前
yyyy发布了新的文献求助50
14秒前
皇帝的床帘完成签到,获得积分10
15秒前
GXY完成签到,获得积分10
17秒前
xiuwen发布了新的文献求助10
17秒前
啦啦啦完成签到,获得积分10
17秒前
Umwandlung完成签到,获得积分10
19秒前
gorgeousgaga完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI5应助ipeakkka采纳,获得10
21秒前
852应助章家炜采纳,获得10
22秒前
Gauss应助张小汉采纳,获得30
24秒前
嘻嘻发布了新的文献求助10
24秒前
杰哥完成签到 ,获得积分10
25秒前
Ava应助赵小可可可可采纳,获得10
25秒前
科研通AI5应助kento采纳,获得30
26秒前
nkmenghan发布了新的文献求助10
27秒前
30秒前
redondo10完成签到,获得积分0
31秒前
32秒前
乔qiao发布了新的文献求助30
35秒前
WZ0904发布了新的文献求助10
36秒前
poegtam完成签到,获得积分10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849