Pareto-optimal Community Search on Large Bipartite Graphs

二部图 计算机科学 理论计算机科学 帕累托原理 算法 数学 数学优化 图形
作者
Yuting Zhang,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1145/3459637.3482282
摘要

In many real-world applications, bipartite graphs are naturally used to model relationships between two types of entities. Community discovery over bipartite graphs is a fundamental problem and has attracted much attention recently. However, all existing studies overlook the weight (e.g., influence or importance) of vertices in forming the community, thus missing useful properties of the community. In this paper, we propose a novel cohesive subgraph model named Pareto-optimal (α β), which is the first to consider both structure cohesiveness and weight of vertices on bipartite graphs. The proposed Pareto-optimal (α β) model follows the concept of (α, β)-core by imposing degree constraints for each type of vertices, and integrates the Pareto-optimality in modelling the weight information from two different types of vertices. An online query algorithm is developed to retrieve Pareto-optimal (α β) with the time complexity of O(p. m) where p is the number of resulting communities, and m is the number of edges in the bipartite graph G. To support efficient query processing over large graphs, we also develop index-based approaches. A complete index i is proposed, and the query algorithm based on i achieves linear query processing time regarding the result size (i.e., the algorithm is optimal). Nevertheless, the index i incurs prohibitively expensive space complexity. To strike a balance between query efficiency and space complexity, a space-efficient compact index 𝕀 is proposed. Computation-sharing strategies are devised to improve the efficiency of the index construction process for the index 𝕀. Extensive experiments on 9 real-world graphs validate both the effectiveness and the efficiency of our query processing algorithms and indexing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yue完成签到 ,获得积分10
刚刚
Chiuchiu完成签到,获得积分10
1秒前
Ava应助收尾人采纳,获得10
3秒前
3秒前
ccm应助曾经的青槐采纳,获得10
3秒前
专注的糖豆完成签到,获得积分10
3秒前
11完成签到 ,获得积分10
4秒前
Pony完成签到,获得积分0
4秒前
111发布了新的文献求助10
6秒前
称心的不言应助YANG采纳,获得10
7秒前
唠叨的胡萝卜完成签到,获得积分10
7秒前
7秒前
搞怪孤丝完成签到 ,获得积分10
7秒前
9秒前
SAINT完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
iaskwho发布了新的文献求助10
13秒前
111完成签到,获得积分10
14秒前
14秒前
DarrenVan完成签到,获得积分10
17秒前
英俊的铭应助lk采纳,获得10
17秒前
lucky完成签到 ,获得积分10
17秒前
王国科发布了新的文献求助10
18秒前
高高的天亦完成签到 ,获得积分10
18秒前
小D发布了新的文献求助10
19秒前
村上春树的摩的完成签到 ,获得积分10
19秒前
Fox完成签到,获得积分20
20秒前
21秒前
一一完成签到 ,获得积分10
21秒前
22秒前
ccm应助科研通管家采纳,获得10
23秒前
Bio应助科研通管家采纳,获得150
23秒前
无花果应助科研通管家采纳,获得10
23秒前
英姑应助科研通管家采纳,获得10
23秒前
24秒前
ccm应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
若ruofeng应助科研通管家采纳,获得20
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142180
求助须知:如何正确求助?哪些是违规求助? 4340425
关于积分的说明 13517521
捐赠科研通 4180348
什么是DOI,文献DOI怎么找? 2292405
邀请新用户注册赠送积分活动 1293003
关于科研通互助平台的介绍 1235514