Pareto-optimal Community Search on Large Bipartite Graphs

二部图 计算机科学 理论计算机科学 帕累托原理 算法 数学 数学优化 图形
作者
Yuting Zhang,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1145/3459637.3482282
摘要

In many real-world applications, bipartite graphs are naturally used to model relationships between two types of entities. Community discovery over bipartite graphs is a fundamental problem and has attracted much attention recently. However, all existing studies overlook the weight (e.g., influence or importance) of vertices in forming the community, thus missing useful properties of the community. In this paper, we propose a novel cohesive subgraph model named Pareto-optimal (α β), which is the first to consider both structure cohesiveness and weight of vertices on bipartite graphs. The proposed Pareto-optimal (α β) model follows the concept of (α, β)-core by imposing degree constraints for each type of vertices, and integrates the Pareto-optimality in modelling the weight information from two different types of vertices. An online query algorithm is developed to retrieve Pareto-optimal (α β) with the time complexity of O(p. m) where p is the number of resulting communities, and m is the number of edges in the bipartite graph G. To support efficient query processing over large graphs, we also develop index-based approaches. A complete index i is proposed, and the query algorithm based on i achieves linear query processing time regarding the result size (i.e., the algorithm is optimal). Nevertheless, the index i incurs prohibitively expensive space complexity. To strike a balance between query efficiency and space complexity, a space-efficient compact index 𝕀 is proposed. Computation-sharing strategies are devised to improve the efficiency of the index construction process for the index 𝕀. Extensive experiments on 9 real-world graphs validate both the effectiveness and the efficiency of our query processing algorithms and indexing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助tiantian采纳,获得10
1秒前
Lucas应助sara采纳,获得10
1秒前
1秒前
2秒前
2秒前
马不停蹄完成签到,获得积分10
4秒前
听话的豆芽完成签到,获得积分10
4秒前
4秒前
大模型应助keyanyan采纳,获得10
5秒前
科研通AI5应助亲亲紫荆采纳,获得30
5秒前
司空豁应助宇小姐采纳,获得10
6秒前
6秒前
6秒前
庆幸发布了新的文献求助10
7秒前
YF_1987发布了新的文献求助10
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
赘婿应助愤怒的梦柏采纳,获得10
9秒前
领导范儿应助KD357采纳,获得10
9秒前
嘻嘻嘻发布了新的文献求助10
9秒前
9秒前
10秒前
文刀发布了新的文献求助10
10秒前
lll发布了新的文献求助20
10秒前
zhe完成签到 ,获得积分10
10秒前
陈惠卿88完成签到,获得积分10
11秒前
共享精神应助木木三采纳,获得10
11秒前
11秒前
考博上岸26完成签到 ,获得积分10
11秒前
华仔应助xunoverflow采纳,获得10
12秒前
13秒前
FeLaN发布了新的文献求助10
13秒前
bkagyin应助庆幸采纳,获得10
13秒前
李雩完成签到 ,获得积分10
13秒前
14秒前
angelalxj关注了科研通微信公众号
14秒前
14秒前
小栩发布了新的文献求助10
15秒前
blank发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343