虚拟筛选
生成语法
计算机科学
人工智能
生成模型
鉴定(生物学)
机器学习
药物发现
生物信息学
生物
植物
作者
Juan I. Di Filippo,Claudio N. Cavasotto
标识
DOI:10.1080/17460441.2021.1979514
摘要
The implementation of Artificial Intelligence (AI) methodologies to drug discovery (DD) are on the rise. Several applications have been developed for structure-based DD, where AI methods provide an alternative framework for the identification of ligands for validated therapeutic targets, as well as the de novo design of ligands through generative models.Herein, the authors review the contributions between the 2019 to present period regarding the application of AI methods to structure-based virtual screening (SBVS) which encompasses mainly molecular docking applications - binding pose prediction and binary classification for ligand or hit identification-, as well as de novo drug design driven by machine learning (ML) generative models, and the validation of AI models in structure-based screening. Studies are reviewed in terms of their main objective, used databases, implemented methodology, input and output, and key results .More profound analyses regarding the validity and applicability of AI methods in DD have begun to appear. In the near future, we expect to see more structure-based generative models- which are scarce in comparison to ligand-based generative models-, the implementation of standard guidelines for validating the generated structures, and more analyses regarding the validation of AI methods in structure-based DD.
科研通智能强力驱动
Strongly Powered by AbleSci AI