Personalized Chronic Disease Follow‐Up Appointments: Risk‐Stratified Care Through Big Data

退伍军人事务部 肾脏疾病 医学 杠杆(统计) 长期护理 医疗保健 大数据 肾病科 重症监护医学 医疗急救 慢性病 计算机科学 内科学 数据挖掘 人工智能 经济 经济增长
作者
Zlatana Nenova,Jennifer Shang
出处
期刊:Production and Operations Management [Wiley]
卷期号:31 (2): 583-606 被引量:3
标识
DOI:10.1111/poms.13568
摘要

Managing patients with chronic conditions is challenging. It requires timely care adjustments based on the patient's health status. We leverage big data to optimize patient monitoring frequencies and improve treatment. Our research is motivated by the need to improve patient care at the Veterans Affairs (VA) hospitals. We propose an integrated model to better serve patients with chronic kidney disease (CKD). CKD is prevalent, complex, and costly. The demand for kidney care has steadily increased; however, there is a decline in the availability of nephrologists. We propose a finite‐horizon Markov decision process (MDP) model, which utilizes evidence‐based and data‐driven approach to identify the best follow‐up appointment schedule for patients. The MDP model helps attain an optimal dynamic treatment plan to enhance patient's quality of life. It is parameterized by data from 11 US Department of Veterans Affairs hospitals, containing 68,513 CKD patients (mostly males between 60 and 90 years old) geographically dispersed throughout the United States between January 1, 2009 and February 21, 2016. Through various estimates and assumptions, we propose an optimal monitoring policy. We find that CKD severity, comorbidities, age, and distance to nephrologist all play roles in shaping patients’ needs of care. Through the VA clinical data, we have numerically validated our recommendation and shown that it considerably outperforms the current kidney care guidelines adopted by the VA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shilong.yang完成签到,获得积分10
刚刚
jy发布了新的文献求助10
1秒前
2秒前
2秒前
梦里发布了新的文献求助10
3秒前
falcon完成签到 ,获得积分10
4秒前
劈里啪啦发布了新的文献求助10
5秒前
耿强发布了新的文献求助10
5秒前
科研通AI5应助坚强的樱采纳,获得10
5秒前
陈杰发布了新的文献求助10
5秒前
nozero完成签到,获得积分10
7秒前
澜生发布了新的文献求助10
8秒前
在水一方应助惠惠采纳,获得10
8秒前
852应助zZ采纳,获得10
8秒前
小马甲应助陌路采纳,获得10
9秒前
1335804518完成签到 ,获得积分10
10秒前
10秒前
甜甜醉波完成签到,获得积分10
10秒前
科研通AI2S应助卷卷王采纳,获得10
11秒前
可爱的函函应助梦里采纳,获得10
11秒前
沐晴完成签到,获得积分10
12秒前
入夏完成签到,获得积分10
12秒前
12秒前
12秒前
苏州小北发布了新的文献求助10
13秒前
13秒前
snail完成签到,获得积分10
14秒前
劈里啪啦完成签到,获得积分10
14秒前
wanci应助Jasmine采纳,获得10
15秒前
aoxiangcaizi12完成签到,获得积分10
15秒前
ding应助通~采纳,获得30
16秒前
17秒前
Annie发布了新的文献求助10
17秒前
晨曦完成签到,获得积分10
18秒前
十一发布了新的文献求助10
18秒前
顾矜应助Peter采纳,获得30
19秒前
Ayanami完成签到,获得积分10
19秒前
英俊的铭应助ysl采纳,获得30
19秒前
酷波er应助范范采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794