Automatic segmentation of the temporomandibular joint disc on magnetic resonance images using a deep learning technique

颞下颌关节 分割 磁共振成像 人工智能 深度学习 计算机科学 医学 口腔正畸科 核医学
作者
Michihito Nozawa,Hirokazu Ito,Yoshiko Ariji,Motoki Fukuda,Chinami Igarashi,Masako Nishiyama,Nobumi Ogi,Akitoshi Katsumata,Kaoru Kobayashi,Eiichiro Ariji
出处
期刊:Dentomaxillofacial Radiology [British Institute of Radiology]
卷期号:: 20210185-20210185
标识
DOI:10.1259/dmfr.20210185
摘要

The aims of the present study were to construct a deep learning model for automatic segmentation of the temporomandibular joint (TMJ) disc on magnetic resonance (MR) images, and to evaluate the performances using the internal and external test data.In total, 1200 MR images of closed and open mouth positions in patients with temporomandibular disorder (TMD) were collected from two hospitals (Hospitals A and B). The training and validation data comprised 1000 images from Hospital A, which were used to create a segmentation model. The performance was evaluated using 200 images from Hospital A (internal validity test) and 200 images from Hospital B (external validity test).Although the analysis of performance determined with data from Hospital B showed low recall (sensitivity), compared with the performance determined with data from Hospital A, both performances were above 80%. Precision (positive predictive value) was lower when test data from Hospital A were used for the position of anterior disc displacement. According to the intra-articular TMD classification, the proportions of accurately assigned TMJs were higher when using images from Hospital A than when using images from Hospital B.The segmentation deep learning model created in this study may be useful for identifying disc positions on MR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权千万发布了新的文献求助10
刚刚
LemonK完成签到,获得积分10
刚刚
夜空完成签到,获得积分20
1秒前
2秒前
zhangerdan完成签到,获得积分10
2秒前
科学家发布了新的文献求助10
3秒前
清a完成签到,获得积分10
3秒前
4秒前
LemonK发布了新的文献求助20
4秒前
英俊的铭应助高贵的往事采纳,获得10
4秒前
酷波er应助xiaoduan采纳,获得10
5秒前
搜集达人应助ljc采纳,获得10
7秒前
bycq完成签到,获得积分10
7秒前
深情安青应助才哥采纳,获得10
7秒前
8秒前
linlinzi发布了新的文献求助10
8秒前
木昜完成签到,获得积分10
9秒前
辣椒酱发布了新的文献求助10
9秒前
陆千万发布了新的文献求助10
9秒前
10秒前
娃哈哈完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
冰淇淋完成签到,获得积分10
12秒前
大个应助SF2768采纳,获得10
12秒前
李健的小迷弟应助Jia采纳,获得10
12秒前
kai0305完成签到,获得积分10
13秒前
夜空发布了新的文献求助30
13秒前
tian关注了科研通微信公众号
14秒前
现实的从蓉完成签到,获得积分20
15秒前
15秒前
jo发布了新的文献求助10
16秒前
LGChemistry发布了新的文献求助10
16秒前
17秒前
高贵的往事完成签到,获得积分10
18秒前
18秒前
木子李完成签到,获得积分10
18秒前
20秒前
黑咚咚完成签到 ,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685