Efficient Inverse Design of 2D Elastic Metamaterial Systems using Invertible Neural Networks

反问题 超材料 摩尔-彭罗斯伪逆 非线性系统 广义逆
作者
Manaswin Oddiraju,Amir Behjat,Mostafa Nouh,Souma Chowdhury
出处
期刊:AIAA AVIATION 2021 FORUM 被引量:1
标识
DOI:10.2514/6.2021-3065
摘要

Locally resonant elastic metamaterials (LREM) can be designed, by optimizing the geometry of the constituent self-repeating unit cells, to potentially damp out vibration in selected frequency ranges, thus yielding desired bandgaps. However, it remains challenging to quickly arrive at unit cell designs that satisfy any requested bandgap specifications within a given global frequency range. This paper develops a computationally efficient framework for (fast) inverse design of LREM, by integrating a new type of machine learning models called invertible neural networks or INN. An INN can be trained to predict the bandgap bounds as a function of the unit cell design, and interestingly at the same time it learns to predict the unit cell design given a bandgap, when executed in reverse. In our case the unit cells are represented in terms of the width's of the outer matrix and middle soft filler layer of the unit cell. Training data on the frequency response of the unit cell is provided by Bloch dispersion analyses. The trained INN is used to instantaneously retrieve feasible (or near feasible) inverse designs given a specified bandgap constraint, which is then used to initialize a forward constrained optimization (based on sequential quadratic programming) to find the bandgap satisfying unit cell with minimum mass. Case studies show favorable performance of this approach, in terms of the bandgap characteristics and minimized mass, when compared to the median scenario over ten randomly initialized optimizations for the same specified bandgaps. Further analysis using FEA verify the bandgap performance of a finite structure comprised of $8\times 8$ arrangement of the unit cells obtained with INN-accelerated inverse design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhayunlong完成签到,获得积分10
3秒前
库里强完成签到,获得积分10
3秒前
英姑应助chancewong采纳,获得10
3秒前
4秒前
Hello应助老实的三问采纳,获得30
4秒前
NexusExplorer应助Yara.H采纳,获得30
5秒前
情怀应助义气的嘉熙采纳,获得10
5秒前
库里强发布了新的文献求助10
6秒前
StarkGavin发布了新的文献求助10
7秒前
sunyafei完成签到,获得积分10
7秒前
赘婿应助Zz采纳,获得10
8秒前
Jara发布了新的文献求助100
9秒前
10秒前
斯文百招发布了新的文献求助10
10秒前
幽默的乘风完成签到,获得积分0
11秒前
Hank发布了新的文献求助10
13秒前
13秒前
StarkGavin完成签到,获得积分10
13秒前
田様应助zxy采纳,获得10
13秒前
欠虐宝宝发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助zhayunlong采纳,获得10
16秒前
16秒前
小青蛙OA发布了新的文献求助10
17秒前
科研通AI2S应助翻水水采纳,获得10
18秒前
18秒前
wyt完成签到,获得积分10
18秒前
18秒前
魁梧的曼易完成签到,获得积分10
19秒前
SHAN发布了新的文献求助10
19秒前
小张完成签到,获得积分10
20秒前
21秒前
meijuan1210完成签到 ,获得积分10
21秒前
21秒前
Hello应助欢呼芷雪采纳,获得10
22秒前
啦啦鱼完成签到 ,获得积分10
22秒前
小青蛙OA完成签到,获得积分10
24秒前
24秒前
大个应助化化化化雪采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055707
求助须知:如何正确求助?哪些是违规求助? 2712333
关于积分的说明 7431052
捐赠科研通 2357290
什么是DOI,文献DOI怎么找? 1248745
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144