Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting

过度拟合 推论 机器学习 计算机科学 人工智能 人工神经网络
作者
Samuel Yeom,Irene Giacomelli,Matt Fredrikson,Somesh Jha
标识
DOI:10.1109/csf.2018.00027
摘要

Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to an attacker, either through the models' structure or their observable behavior. However, the underlying cause of this privacy risk is not well understood beyond a handful of anecdotal accounts that suggest overfitting and influence might play a role. This paper examines the effect that overfitting and influence have on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks. Using both formal and empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular machine learning algorithms. We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute meets certain conditions about its influence, attribute inference attacks. Interestingly, our formal analysis also shows that overfitting is not necessary for these attacks and begins to shed light on what other factors may be in play. Finally, we explore the connection between membership inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咕噜咕噜发布了新的文献求助10
1秒前
2秒前
FU发布了新的文献求助10
3秒前
4秒前
剪刀石头布完成签到,获得积分10
4秒前
沐风应助多肉葡萄采纳,获得20
5秒前
啦啦发布了新的文献求助10
6秒前
super chan发布了新的文献求助10
7秒前
可爱的函函应助海的终章采纳,获得10
8秒前
无辜又菡发布了新的文献求助30
9秒前
10秒前
Lemon陈发布了新的文献求助10
12秒前
vernon完成签到,获得积分20
14秒前
肖肖完成签到,获得积分10
14秒前
whn完成签到 ,获得积分10
14秒前
15秒前
大模型应助神凰采纳,获得10
15秒前
村医发布了新的文献求助50
16秒前
俗人发布了新的文献求助10
16秒前
张张完成签到 ,获得积分10
16秒前
wm发布了新的文献求助10
17秒前
18秒前
Icee完成签到,获得积分10
18秒前
青阳完成签到,获得积分10
18秒前
19秒前
KYJR完成签到,获得积分10
20秒前
alleyyy发布了新的文献求助10
21秒前
SciGPT应助VDC采纳,获得10
22秒前
23秒前
文文发布了新的文献求助10
25秒前
莫莫发布了新的文献求助10
25秒前
踏实书竹完成签到 ,获得积分10
25秒前
科研人应助Lemon陈采纳,获得10
27秒前
大模型应助舟舟采纳,获得20
27秒前
jyy应助楠楠2001采纳,获得10
29秒前
科研通AI2S应助楠楠2001采纳,获得10
29秒前
田様应助楠楠2001采纳,获得10
29秒前
半半完成签到 ,获得积分20
29秒前
白枫完成签到 ,获得积分10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461273
求助须知:如何正确求助?哪些是违规求助? 3054977
关于积分的说明 9045885
捐赠科研通 2744911
什么是DOI,文献DOI怎么找? 1505727
科研通“疑难数据库(出版商)”最低求助积分说明 695812
邀请新用户注册赠送积分活动 695233