Deep learning microscopy

深度学习 人工智能 计算机科学 显微镜 领域(数学) 人工神经网络 计算机视觉 景深 光学显微镜 分辨率(逻辑) 数值孔径 图像分辨率 显微镜 光学 物理 数学 扫描电子显微镜 波长 纯数学
作者
Yair Rivenson,Zoltán Göröcs,Harun Günaydın,Yibo Zhang,Hongda Wang,Aydogan Ozcan
出处
期刊:Optica [Optica Publishing Group]
卷期号:4 (11): 1437-1437 被引量:319
标识
DOI:10.1364/optica.4.001437
摘要

We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小焦儿完成签到,获得积分10
4秒前
塔莉娅完成签到,获得积分10
5秒前
7秒前
烟花应助budingman采纳,获得20
8秒前
8秒前
9秒前
称心凡霜完成签到,获得积分10
10秒前
xiaoyao发布了新的文献求助30
11秒前
11秒前
11秒前
13秒前
Wrasul完成签到 ,获得积分10
13秒前
QYF发布了新的文献求助10
13秒前
一米八关注了科研通微信公众号
13秒前
saisai发布了新的文献求助20
14秒前
15秒前
小蘑菇应助博学为农采纳,获得10
17秒前
17秒前
天天快乐应助三日采纳,获得10
20秒前
田様应助北彧采纳,获得10
20秒前
欣喜蘑菇发布了新的文献求助10
21秒前
呵呵发布了新的文献求助10
21秒前
22秒前
小田完成签到 ,获得积分10
22秒前
cherry bomb完成签到,获得积分10
26秒前
斯文败类应助ZLX采纳,获得10
27秒前
安详的曲奇完成签到,获得积分10
28秒前
意昂发布了新的文献求助10
28秒前
冷傲凝琴发布了新的文献求助10
29秒前
wanci应助saisai采纳,获得20
31秒前
32秒前
32秒前
领导范儿应助刘小雨采纳,获得10
32秒前
一米八发布了新的文献求助10
34秒前
居选金发布了新的文献求助10
35秒前
玊尔完成签到,获得积分20
37秒前
38秒前
39秒前
hoongyan完成签到 ,获得积分10
40秒前
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382