Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM) for wound healing through immunomodulation

去细胞化 细胞外基质 生物相容性 伤口愈合 材料科学 再生(生物学) 生物医学工程 组织工程 纳米技术 细胞生物学 医学 生物 免疫学 冶金
作者
Pu Luo,Ruoxuan Huang,You Wu,Xingchen Liu,Zhengjie Shan,L. Gong,Shudan Deng,Haiwen Liu,Jinghan Fang,Shiyu Wu,Xiayi Wu,Quan Liu,Zetao Chen,K.W.K. Yeung,Wei Qiao,Shoucheng Chen,Zhuofan Chen
出处
期刊:Bioactive Materials [Elsevier]
卷期号:28: 95-111 被引量:5
标识
DOI:10.1016/j.bioactmat.2023.05.011
摘要

With the discovery of the pivotal role of macrophages in tissue regeneration through shaping the tissue immune microenvironment, various immunomodulatory strategies have been proposed to modify traditional biomaterials. Decellularized extracellular matrix (dECM) has been extensively used in the clinical treatment of tissue injury due to its favorable biocompatibility and similarity to the native tissue environment. However, most reported decellularization protocols may cause damage to the native structure of dECM, which undermines its inherent advantages and potential clinical applications. Here, we introduce a mechanically tunable dECM prepared by optimizing the freeze-thaw cycles. We demonstrated that the alteration in micromechanical properties of dECM resulting from the cyclic freeze-thaw process contributes to distinct macrophage-mediated host immune responses to the materials, which are recently recognized to play a pivotal role in determining the outcome of tissue regeneration. Our sequencing data further revealed that the immunomodulatory effect of dECM was induced via the mechnotrasduction pathways in macrophages. Next, we tested the dECM in a rat skin injury model and found an enhanced micromechanical property of dECM achieved with three freeze-thaw cycles significantly promoted the M2 polarization of macrophages, leading to superior wound healing. These findings suggest that the immunomodulatory property of dECM can be efficiently manipulated by tailoring its inherent micromechanical properties during the decellularization process. Therefore, our mechanics-immunomodulation-based strategy provides new insights into the development of advanced biomaterials for wound healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bioc发布了新的文献求助10
刚刚
Orange应助tong童采纳,获得10
1秒前
淡定向梦完成签到 ,获得积分10
1秒前
orixero应助科学家采纳,获得10
1秒前
2秒前
hhhhhalf完成签到,获得积分10
3秒前
JamesPei应助沧海横流采纳,获得10
4秒前
研友_VZG7GZ应助gyhmybsy采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
缘起缘灭发布了新的文献求助10
6秒前
画船听雨眠完成签到,获得积分10
6秒前
语秋发布了新的文献求助10
6秒前
科研通AI2S应助机灵的煎蛋采纳,获得10
7秒前
古的古的应助LX采纳,获得10
7秒前
8秒前
Wayi发布了新的文献求助10
8秒前
喝到几点完成签到,获得积分10
8秒前
Iris关注了科研通微信公众号
9秒前
9秒前
小马甲应助Dobronx03采纳,获得10
10秒前
情怀应助画船听雨眠采纳,获得10
10秒前
LWW发布了新的文献求助10
10秒前
Ti完成签到,获得积分10
10秒前
11秒前
王111完成签到,获得积分10
11秒前
冯志华发布了新的文献求助10
12秒前
12秒前
13秒前
孝顺的青枫完成签到,获得积分10
13秒前
小二郎应助舒服的曼云采纳,获得10
13秒前
qaw发布了新的文献求助10
13秒前
栗子鱼发布了新的文献求助10
14秒前
科目三应助鱼海寻俞采纳,获得10
15秒前
无敌暴龙兽女生2完成签到 ,获得积分20
15秒前
quhayley应助元谷雪采纳,获得10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685