Multi-Scale Self-Supervised Graph Contrastive Learning With Injective Node Augmentation

计算机科学 图形 节点(物理) 理论计算机科学 人工智能 粒度 结构工程 工程类 操作系统
作者
Haonan Zhang,Yuyang Ren,Luoyi Fu,Xinbing Wang,Guihai Chen,Chenghu Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 261-274 被引量:3
标识
DOI:10.1109/tkde.2023.3278463
摘要

Graph Contrastive Learning (GCL) with Graph Neural Networks (GNN) has emerged as a promising method for learning latent node representations in a self-supervised manner. Most of existing GCL methods employ random sampling for graph view augmentation and maximize the agreement of the node representations between the views. However, the random augmentation manner, which is likely to produce very similar graph view samplings, may easily result in incomplete nodal contextual information, thus weakening the discrimination of node representations. To this end, this paper proposes a novel trainable scheme from the perspective of node augmentation, which is theoretically proved to be injective and utilizes the subgraphs consisting of each node with its neighbors to enhance the distinguishability of nodal view. Notably, our proposed scheme tries to enrich node representations via a multi-scale contrastive training that integrates three different levels of training granularity, i.e., subgraph level, graph- and node-level contextual information. In particular, the subgraph-level objective between augmented and original node views is constructed to enhance the discrimination of node representations while graph- and node-level objectives with global and local information from the original graph are developed to improve the generalization ability of representations. Experiment results demonstrate that our framework outperforms existing state-of-the-art baselines and even surpasses several supervised counterparts on four real-world datasets for node classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spring发布了新的文献求助10
1秒前
1秒前
2秒前
eason应助安安采纳,获得20
3秒前
3秒前
Hello应助浩然采纳,获得10
4秒前
温酒随行发布了新的文献求助10
4秒前
5秒前
tododoto完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
Dong完成签到,获得积分10
6秒前
ZHUTOU发布了新的文献求助10
6秒前
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
WXY发布了新的文献求助30
11秒前
科研通AI5应助曦子曦子采纳,获得10
11秒前
欢呼谷冬发布了新的文献求助10
12秒前
kx发布了新的文献求助10
12秒前
13秒前
13秒前
谨言发布了新的文献求助10
14秒前
14秒前
cnas完成签到,获得积分10
14秒前
klandcy完成签到,获得积分10
14秒前
白居易发布了新的文献求助10
15秒前
Yutound完成签到 ,获得积分10
15秒前
Ava应助虚幻的一一采纳,获得10
15秒前
NexusExplorer应助YY采纳,获得10
16秒前
凯凯完成签到,获得积分10
16秒前
SciGPT应助巧克力大王采纳,获得10
17秒前
LL完成签到,获得积分20
17秒前
18秒前
科研通AI2S应助uni采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199