已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Foresight—a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study

时间轴 计算机科学 变压器 健康信息学 情报检索 病历 人工智能 自然语言处理 数据科学 医学 公共卫生 工程类 护理部 考古 放射科 电压 电气工程 历史
作者
Željko Kraljević,Daniel Bean,Anthony Shek,Rebecca Bendayan,Harry Hemingway,Joshua Au Yeung,Alexander Deng,Alfred Balston,Jack Ross,Esther Idowu,James Teo,Richard Dobson
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e281-e290 被引量:14
标识
DOI:10.1016/s2589-7500(24)00025-6
摘要

BackgroundAn electronic health record (EHR) holds detailed longitudinal information about a patient's health status and general clinical history, a large portion of which is stored as unstructured, free text. Existing approaches to model a patient's trajectory focus mostly on structured data and a subset of single-domain outcomes. This study aims to evaluate the effectiveness of Foresight, a generative transformer in temporal modelling of patient data, integrating both free text and structured formats, to predict a diverse array of future medical outcomes, such as disorders, substances (eg, to do with medicines, allergies, or poisonings), procedures, and findings (eg, relating to observations, judgements, or assessments).MethodsForesight is a novel transformer-based pipeline that uses named entity recognition and linking tools to convert EHR document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events, such as disorders, substances, procedures, and findings. The Foresight pipeline has four main components: (1) CogStack (data retrieval and preprocessing); (2) the Medical Concept Annotation Toolkit (structuring of the free-text information from EHRs); (3) Foresight Core (deep-learning model for biomedical concept modelling); and (4) the Foresight web application. We processed the entire free-text portion from three different hospital datasets (King's College Hospital [KCH], South London and Maudsley [SLaM], and the US Medical Information Mart for Intensive Care III [MIMIC-III]), resulting in information from 811 336 patients and covering both physical and mental health institutions. We measured the performance of models using custom metrics derived from precision and recall.FindingsForesight achieved a precision@10 (ie, of 10 forecasted candidates, at least one is correct) of 0·68 (SD 0·0027) for the KCH dataset, 0·76 (0·0032) for the SLaM dataset, and 0·88 (0·0018) for the MIMIC-III dataset, for forecasting the next new disorder in a patient timeline. Foresight also achieved a precision@10 value of 0·80 (0·0013) for the KCH dataset, 0·81 (0·0026) for the SLaM dataset, and 0·91 (0·0011) for the MIMIC-III dataset, for forecasting the next new biomedical concept. In addition, Foresight was validated on 34 synthetic patient timelines by five clinicians and achieved a relevancy of 33 (97% [95% CI 91–100]) of 34 for the top forecasted candidate disorder. As a generative model, Foresight can forecast follow-on biomedical concepts for as many steps as required.InterpretationForesight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials, and clinical research to study the progression of disorders, to simulate interventions and counterfactuals, and for educational purposes.FundingNational Health Service Artificial Intelligence Laboratory, National Institute for Health and Care Research Biomedical Research Centre, and Health Data Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nulinuli完成签到 ,获得积分10
1秒前
充电宝应助李lll采纳,获得10
1秒前
毛豆爸爸应助飘逸问晴采纳,获得20
3秒前
3秒前
4秒前
彭于晏应助树袋熊采纳,获得100
4秒前
6秒前
8秒前
李lll完成签到,获得积分10
9秒前
11秒前
霸气映之发布了新的文献求助10
11秒前
12秒前
刘歌发布了新的文献求助10
15秒前
小乔发布了新的文献求助10
21秒前
科研通AI2S应助开心开心采纳,获得10
22秒前
Ghooor发布了新的文献求助10
23秒前
代杰居然发布了新的文献求助30
23秒前
29秒前
BA1完成签到,获得积分10
30秒前
不配.应助Cindy采纳,获得10
30秒前
无限一凤完成签到 ,获得积分10
31秒前
薄荷油完成签到 ,获得积分10
31秒前
无限一凤关注了科研通微信公众号
33秒前
33秒前
ice7应助代杰居然采纳,获得10
34秒前
37秒前
氧气橘子发布了新的文献求助30
38秒前
完美世界应助高贵的子默采纳,获得10
39秒前
道友且慢发布了新的文献求助20
43秒前
raziel完成签到,获得积分10
44秒前
LJ徽完成签到 ,获得积分10
46秒前
47秒前
氧气橘子完成签到,获得积分10
49秒前
无限一凤发布了新的文献求助10
53秒前
顾矜应助十月采纳,获得10
56秒前
58秒前
58秒前
小许小许完成签到,获得积分10
59秒前
皮皮完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3186488
求助须知:如何正确求助?哪些是违规求助? 2836756
关于积分的说明 8011101
捐赠科研通 2499109
什么是DOI,文献DOI怎么找? 1334088
科研通“疑难数据库(出版商)”最低求助积分说明 637023
邀请新用户注册赠送积分活动 605004