Foresight—a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study

时间轴 计算机科学 变压器 健康信息学 情报检索 病历 人工智能 自然语言处理 数据科学 医学 公共卫生 工程类 护理部 考古 放射科 电压 电气工程 历史
作者
Željko Kraljević,Daniel Bean,Anthony Shek,Rebecca Bendayan,Harry Hemingway,Joshua Au Yeung,Alexander Deng,Alfred Balston,Jack Ross,Esther Idowu,James Teo,Richard Dobson
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e281-e290 被引量:14
标识
DOI:10.1016/s2589-7500(24)00025-6
摘要

BackgroundAn electronic health record (EHR) holds detailed longitudinal information about a patient's health status and general clinical history, a large portion of which is stored as unstructured, free text. Existing approaches to model a patient's trajectory focus mostly on structured data and a subset of single-domain outcomes. This study aims to evaluate the effectiveness of Foresight, a generative transformer in temporal modelling of patient data, integrating both free text and structured formats, to predict a diverse array of future medical outcomes, such as disorders, substances (eg, to do with medicines, allergies, or poisonings), procedures, and findings (eg, relating to observations, judgements, or assessments).MethodsForesight is a novel transformer-based pipeline that uses named entity recognition and linking tools to convert EHR document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events, such as disorders, substances, procedures, and findings. The Foresight pipeline has four main components: (1) CogStack (data retrieval and preprocessing); (2) the Medical Concept Annotation Toolkit (structuring of the free-text information from EHRs); (3) Foresight Core (deep-learning model for biomedical concept modelling); and (4) the Foresight web application. We processed the entire free-text portion from three different hospital datasets (King's College Hospital [KCH], South London and Maudsley [SLaM], and the US Medical Information Mart for Intensive Care III [MIMIC-III]), resulting in information from 811 336 patients and covering both physical and mental health institutions. We measured the performance of models using custom metrics derived from precision and recall.FindingsForesight achieved a precision@10 (ie, of 10 forecasted candidates, at least one is correct) of 0·68 (SD 0·0027) for the KCH dataset, 0·76 (0·0032) for the SLaM dataset, and 0·88 (0·0018) for the MIMIC-III dataset, for forecasting the next new disorder in a patient timeline. Foresight also achieved a precision@10 value of 0·80 (0·0013) for the KCH dataset, 0·81 (0·0026) for the SLaM dataset, and 0·91 (0·0011) for the MIMIC-III dataset, for forecasting the next new biomedical concept. In addition, Foresight was validated on 34 synthetic patient timelines by five clinicians and achieved a relevancy of 33 (97% [95% CI 91–100]) of 34 for the top forecasted candidate disorder. As a generative model, Foresight can forecast follow-on biomedical concepts for as many steps as required.InterpretationForesight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials, and clinical research to study the progression of disorders, to simulate interventions and counterfactuals, and for educational purposes.FundingNational Health Service Artificial Intelligence Laboratory, National Institute for Health and Care Research Biomedical Research Centre, and Health Data Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助orchid采纳,获得10
1秒前
helloworld完成签到,获得积分10
1秒前
今日甜分超标完成签到 ,获得积分10
1秒前
张岱帅z完成签到,获得积分10
1秒前
冷傲的如柏完成签到,获得积分10
3秒前
隐形曼青应助在下非好汉采纳,获得10
3秒前
小黄发布了新的文献求助10
3秒前
自然归尘完成签到 ,获得积分10
3秒前
4秒前
4秒前
研友_ZbKr48完成签到 ,获得积分10
5秒前
小遇完成签到 ,获得积分10
7秒前
何先生发布了新的文献求助10
7秒前
小俞完成签到,获得积分10
9秒前
9秒前
leolee完成签到 ,获得积分10
11秒前
12秒前
小黄完成签到,获得积分10
13秒前
orchid发布了新的文献求助10
15秒前
MandyZZZ发布了新的文献求助10
17秒前
chen发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
Lee完成签到,获得积分10
23秒前
lccccc发布了新的文献求助10
25秒前
单薄惜文发布了新的文献求助10
25秒前
ommphey完成签到 ,获得积分10
27秒前
xx完成签到,获得积分10
28秒前
Willer完成签到,获得积分10
28秒前
30秒前
xx发布了新的文献求助10
31秒前
包容的忆灵完成签到 ,获得积分10
31秒前
充电宝应助Singularity采纳,获得10
33秒前
重要盼望完成签到,获得积分10
33秒前
暮雪残梅完成签到 ,获得积分10
33秒前
dandan完成签到 ,获得积分10
33秒前
蓝桉发布了新的文献求助30
34秒前
星辰完成签到,获得积分10
34秒前
果粒儿完成签到 ,获得积分10
36秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
A real-time energy management strategy based on fuzzy control and ECMS for PHEVs 400
Handbook on People's China (1957) 400
2024 Medicinal Chemistry Reviews 400
Why I Chose China [by Morris R. Wills] in "Look", February 8 and 22, 1966; 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3190195
求助须知:如何正确求助?哪些是违规求助? 2839486
关于积分的说明 8023980
捐赠科研通 2502382
什么是DOI,文献DOI怎么找? 1336474
科研通“疑难数据库(出版商)”最低求助积分说明 637841
邀请新用户注册赠送积分活动 606020