Foresight—a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study

时间轴 计算机科学 变压器 健康信息学 情报检索 病历 人工智能 自然语言处理 数据科学 医学 公共卫生 工程类 护理部 考古 放射科 电压 电气工程 历史
作者
Željko Kraljević,Daniel Bean,Anthony Shek,Rebecca Bendayan,Harry Hemingway,Joshua Au Yeung,Alexander Deng,Alfred Balston,Jack Ross,Esther Idowu,James Teo,Richard Dobson
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e281-e290 被引量:14
标识
DOI:10.1016/s2589-7500(24)00025-6
摘要

BackgroundAn electronic health record (EHR) holds detailed longitudinal information about a patient's health status and general clinical history, a large portion of which is stored as unstructured, free text. Existing approaches to model a patient's trajectory focus mostly on structured data and a subset of single-domain outcomes. This study aims to evaluate the effectiveness of Foresight, a generative transformer in temporal modelling of patient data, integrating both free text and structured formats, to predict a diverse array of future medical outcomes, such as disorders, substances (eg, to do with medicines, allergies, or poisonings), procedures, and findings (eg, relating to observations, judgements, or assessments).MethodsForesight is a novel transformer-based pipeline that uses named entity recognition and linking tools to convert EHR document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events, such as disorders, substances, procedures, and findings. The Foresight pipeline has four main components: (1) CogStack (data retrieval and preprocessing); (2) the Medical Concept Annotation Toolkit (structuring of the free-text information from EHRs); (3) Foresight Core (deep-learning model for biomedical concept modelling); and (4) the Foresight web application. We processed the entire free-text portion from three different hospital datasets (King's College Hospital [KCH], South London and Maudsley [SLaM], and the US Medical Information Mart for Intensive Care III [MIMIC-III]), resulting in information from 811 336 patients and covering both physical and mental health institutions. We measured the performance of models using custom metrics derived from precision and recall.FindingsForesight achieved a precision@10 (ie, of 10 forecasted candidates, at least one is correct) of 0·68 (SD 0·0027) for the KCH dataset, 0·76 (0·0032) for the SLaM dataset, and 0·88 (0·0018) for the MIMIC-III dataset, for forecasting the next new disorder in a patient timeline. Foresight also achieved a precision@10 value of 0·80 (0·0013) for the KCH dataset, 0·81 (0·0026) for the SLaM dataset, and 0·91 (0·0011) for the MIMIC-III dataset, for forecasting the next new biomedical concept. In addition, Foresight was validated on 34 synthetic patient timelines by five clinicians and achieved a relevancy of 33 (97% [95% CI 91–100]) of 34 for the top forecasted candidate disorder. As a generative model, Foresight can forecast follow-on biomedical concepts for as many steps as required.InterpretationForesight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials, and clinical research to study the progression of disorders, to simulate interventions and counterfactuals, and for educational purposes.FundingNational Health Service Artificial Intelligence Laboratory, National Institute for Health and Care Research Biomedical Research Centre, and Health Data Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinl518完成签到,获得积分10
2秒前
很傻的狗完成签到,获得积分10
2秒前
2秒前
dd完成签到,获得积分20
2秒前
YwYzzZ发布了新的文献求助10
2秒前
Ettrickfield完成签到,获得积分10
3秒前
3秒前
3秒前
wf完成签到,获得积分10
4秒前
辛勤尔冬完成签到,获得积分10
6秒前
22完成签到 ,获得积分10
7秒前
小二郎应助辣辣采纳,获得10
7秒前
爱静静应助dd采纳,获得10
7秒前
和谐的棉花糖完成签到 ,获得积分10
8秒前
tearun发布了新的文献求助10
8秒前
bastien发布了新的文献求助10
9秒前
tanghong完成签到,获得积分10
9秒前
伶俐海安完成签到 ,获得积分10
10秒前
淡淡的若冰应助学到发疯采纳,获得10
10秒前
Violet完成签到,获得积分10
10秒前
懒得可爱完成签到,获得积分10
11秒前
华老五完成签到,获得积分10
11秒前
璐璐完成签到 ,获得积分10
13秒前
bastien完成签到,获得积分10
14秒前
冰阔落完成签到 ,获得积分10
15秒前
老王子完成签到,获得积分10
15秒前
xinxin完成签到,获得积分10
16秒前
张阳完成签到,获得积分10
17秒前
充电宝应助北城无夏采纳,获得10
17秒前
Rgly完成签到 ,获得积分10
17秒前
虚幻谷波完成签到,获得积分10
17秒前
老王子发布了新的文献求助10
18秒前
波比冰苏打完成签到,获得积分10
18秒前
海慕云完成签到,获得积分10
18秒前
淡淡的若冰应助ziyue采纳,获得10
20秒前
能干的树叶完成签到 ,获得积分10
20秒前
董小天天应助叫滚滚采纳,获得50
20秒前
怕孤独的访云完成签到 ,获得积分10
21秒前
xing完成签到,获得积分10
22秒前
大吴克发布了新的文献求助10
22秒前
高分求助中
Spray / Wall-interaction Modelling by Dimensionless Data Analysis 2000
Write Like a Chemist: A Guide and Resource (第二版) 600
Mixed-anion Compounds 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Earth System Geophysics 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3200846
求助须知:如何正确求助?哪些是违规求助? 2850652
关于积分的说明 8073045
捐赠科研通 2514396
什么是DOI,文献DOI怎么找? 1347144
科研通“疑难数据库(出版商)”最低求助积分说明 640332
邀请新用户注册赠送积分活动 610525