Foresight—a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study

时间轴 计算机科学 变压器 健康信息学 情报检索 病历 人工智能 自然语言处理 数据科学 医学 公共卫生 工程类 护理部 考古 放射科 电压 电气工程 历史
作者
Željko Kraljević,Daniel Bean,Anthony Shek,Rebecca Bendayan,Harry Hemingway,Joshua Au Yeung,Alexander Deng,Alfred Balston,Jack Ross,Esther Idowu,James Teo,Richard Dobson
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:6 (4): e281-e290 被引量:14
标识
DOI:10.1016/s2589-7500(24)00025-6
摘要

BackgroundAn electronic health record (EHR) holds detailed longitudinal information about a patient's health status and general clinical history, a large portion of which is stored as unstructured, free text. Existing approaches to model a patient's trajectory focus mostly on structured data and a subset of single-domain outcomes. This study aims to evaluate the effectiveness of Foresight, a generative transformer in temporal modelling of patient data, integrating both free text and structured formats, to predict a diverse array of future medical outcomes, such as disorders, substances (eg, to do with medicines, allergies, or poisonings), procedures, and findings (eg, relating to observations, judgements, or assessments).MethodsForesight is a novel transformer-based pipeline that uses named entity recognition and linking tools to convert EHR document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events, such as disorders, substances, procedures, and findings. The Foresight pipeline has four main components: (1) CogStack (data retrieval and preprocessing); (2) the Medical Concept Annotation Toolkit (structuring of the free-text information from EHRs); (3) Foresight Core (deep-learning model for biomedical concept modelling); and (4) the Foresight web application. We processed the entire free-text portion from three different hospital datasets (King's College Hospital [KCH], South London and Maudsley [SLaM], and the US Medical Information Mart for Intensive Care III [MIMIC-III]), resulting in information from 811 336 patients and covering both physical and mental health institutions. We measured the performance of models using custom metrics derived from precision and recall.FindingsForesight achieved a precision@10 (ie, of 10 forecasted candidates, at least one is correct) of 0·68 (SD 0·0027) for the KCH dataset, 0·76 (0·0032) for the SLaM dataset, and 0·88 (0·0018) for the MIMIC-III dataset, for forecasting the next new disorder in a patient timeline. Foresight also achieved a precision@10 value of 0·80 (0·0013) for the KCH dataset, 0·81 (0·0026) for the SLaM dataset, and 0·91 (0·0011) for the MIMIC-III dataset, for forecasting the next new biomedical concept. In addition, Foresight was validated on 34 synthetic patient timelines by five clinicians and achieved a relevancy of 33 (97% [95% CI 91–100]) of 34 for the top forecasted candidate disorder. As a generative model, Foresight can forecast follow-on biomedical concepts for as many steps as required.InterpretationForesight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials, and clinical research to study the progression of disorders, to simulate interventions and counterfactuals, and for educational purposes.FundingNational Health Service Artificial Intelligence Laboratory, National Institute for Health and Care Research Biomedical Research Centre, and Health Data Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
feijelly完成签到,获得积分10
4秒前
5秒前
木又完成签到 ,获得积分10
6秒前
酷酷小子完成签到 ,获得积分10
6秒前
zoie0809发布了新的文献求助10
9秒前
青羽落霞完成签到 ,获得积分10
9秒前
ycc完成签到,获得积分10
11秒前
zoie0809完成签到,获得积分10
14秒前
Ray完成签到 ,获得积分10
23秒前
如初完成签到 ,获得积分10
24秒前
hsrlbc完成签到,获得积分10
28秒前
美满的皮卡丘完成签到 ,获得积分10
33秒前
安安滴滴完成签到 ,获得积分10
34秒前
如意的馒头完成签到 ,获得积分10
34秒前
amy完成签到,获得积分20
35秒前
ZCH1111完成签到,获得积分10
39秒前
amy发布了新的文献求助10
39秒前
杳鸢应助ZCH1111采纳,获得20
46秒前
古炮发布了新的文献求助50
47秒前
笨笨忘幽完成签到,获得积分10
47秒前
九月完成签到 ,获得积分10
50秒前
Milo完成签到,获得积分10
54秒前
ChouNic完成签到 ,获得积分10
55秒前
jeronimo完成签到,获得积分10
55秒前
小小果妈完成签到 ,获得积分10
59秒前
1分钟前
wyt完成签到,获得积分10
1分钟前
wyt发布了新的文献求助10
1分钟前
yupingqin完成签到 ,获得积分10
1分钟前
可靠的书桃完成签到 ,获得积分10
1分钟前
L_l完成签到 ,获得积分10
1分钟前
george完成签到,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
sunny完成签到 ,获得积分10
1分钟前
george发布了新的文献求助10
1分钟前
Driscoll完成签到 ,获得积分10
1分钟前
无语的冰淇淋完成签到 ,获得积分10
1分钟前
Wangbeibei发布了新的文献求助10
1分钟前
月亮完成签到 ,获得积分10
2分钟前
小巷夜雨完成签到 ,获得积分10
2分钟前
高分求助中
Evolution 3rd edition 1500
保险藏宝图 1000
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3183763
求助须知:如何正确求助?哪些是违规求助? 2833786
关于积分的说明 7995586
捐赠科研通 2496028
什么是DOI,文献DOI怎么找? 1331890
科研通“疑难数据库(出版商)”最低求助积分说明 636455
邀请新用户注册赠送积分活动 603625