亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Foresight—a generative pretrained transformer for modelling of patient timelines using electronic health records: a retrospective modelling study

时间轴 计算机科学 变压器 健康信息学 情报检索 病历 人工智能 自然语言处理 数据科学 医学 公共卫生 工程类 放射科 护理部 电压 考古 电气工程 历史
作者
Željko Kraljević,Daniel Bean,Anthony Shek,Rebecca Bendayan,Harry Hemingway,Joshua Au Yeung,Alexander Deng,Alfred Balston,Jack Ross,Esther Idowu,James Teo,Richard Dobson
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (4): e281-e290 被引量:38
标识
DOI:10.1016/s2589-7500(24)00025-6
摘要

BackgroundAn electronic health record (EHR) holds detailed longitudinal information about a patient's health status and general clinical history, a large portion of which is stored as unstructured, free text. Existing approaches to model a patient's trajectory focus mostly on structured data and a subset of single-domain outcomes. This study aims to evaluate the effectiveness of Foresight, a generative transformer in temporal modelling of patient data, integrating both free text and structured formats, to predict a diverse array of future medical outcomes, such as disorders, substances (eg, to do with medicines, allergies, or poisonings), procedures, and findings (eg, relating to observations, judgements, or assessments).MethodsForesight is a novel transformer-based pipeline that uses named entity recognition and linking tools to convert EHR document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events, such as disorders, substances, procedures, and findings. The Foresight pipeline has four main components: (1) CogStack (data retrieval and preprocessing); (2) the Medical Concept Annotation Toolkit (structuring of the free-text information from EHRs); (3) Foresight Core (deep-learning model for biomedical concept modelling); and (4) the Foresight web application. We processed the entire free-text portion from three different hospital datasets (King's College Hospital [KCH], South London and Maudsley [SLaM], and the US Medical Information Mart for Intensive Care III [MIMIC-III]), resulting in information from 811 336 patients and covering both physical and mental health institutions. We measured the performance of models using custom metrics derived from precision and recall.FindingsForesight achieved a precision@10 (ie, of 10 forecasted candidates, at least one is correct) of 0·68 (SD 0·0027) for the KCH dataset, 0·76 (0·0032) for the SLaM dataset, and 0·88 (0·0018) for the MIMIC-III dataset, for forecasting the next new disorder in a patient timeline. Foresight also achieved a precision@10 value of 0·80 (0·0013) for the KCH dataset, 0·81 (0·0026) for the SLaM dataset, and 0·91 (0·0011) for the MIMIC-III dataset, for forecasting the next new biomedical concept. In addition, Foresight was validated on 34 synthetic patient timelines by five clinicians and achieved a relevancy of 33 (97% [95% CI 91–100]) of 34 for the top forecasted candidate disorder. As a generative model, Foresight can forecast follow-on biomedical concepts for as many steps as required.InterpretationForesight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials, and clinical research to study the progression of disorders, to simulate interventions and counterfactuals, and for educational purposes.FundingNational Health Service Artificial Intelligence Laboratory, National Institute for Health and Care Research Biomedical Research Centre, and Health Data Research UK.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的曲奇完成签到,获得积分10
16秒前
搜集达人应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
惑梦梦完成签到,获得积分10
44秒前
健壮的迎蕾完成签到 ,获得积分10
1分钟前
Panther完成签到,获得积分10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
DongYirong应助科研通管家采纳,获得20
2分钟前
lyy完成签到 ,获得积分10
2分钟前
3分钟前
赝品也烂漫完成签到,获得积分10
4分钟前
Zx_1993应助和谐的芷文采纳,获得10
4分钟前
冬去春来完成签到 ,获得积分10
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
赵海瑞发布了新的文献求助10
4分钟前
daixan89完成签到 ,获得积分10
4分钟前
howgoods完成签到 ,获得积分10
5分钟前
远山笑你完成签到 ,获得积分10
5分钟前
linkman完成签到,获得积分0
5分钟前
小蘑菇应助linkman采纳,获得30
5分钟前
6分钟前
Everything发布了新的文献求助200
6分钟前
dynamoo发布了新的文献求助200
7分钟前
7分钟前
罗逸发布了新的文献求助10
8分钟前
linkman发布了新的文献求助500
8分钟前
SciGPT应助罗逸采纳,获得10
8分钟前
8分钟前
情怀应助科研通管家采纳,获得10
8分钟前
Anto完成签到,获得积分10
8分钟前
葛力发布了新的文献求助10
8分钟前
dynamoo发布了新的文献求助200
9分钟前
10分钟前
xianianrui发布了新的文献求助10
10分钟前
浮游应助科研通管家采纳,获得20
10分钟前
科研通AI2S应助科研通管家采纳,获得30
10分钟前
10分钟前
bkagyin应助诉与山风听采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
台灣螢火蟲 500
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4540754
求助须知:如何正确求助?哪些是违规求助? 3974573
关于积分的说明 12310661
捐赠科研通 3641760
什么是DOI,文献DOI怎么找? 2005346
邀请新用户注册赠送积分活动 1040768
科研通“疑难数据库(出版商)”最低求助积分说明 929984