Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然秋柳完成签到 ,获得积分10
刚刚
我是老大应助经法采纳,获得10
刚刚
默默的皮牙子应助经法采纳,获得10
刚刚
orixero应助经法采纳,获得10
刚刚
小马甲应助经法采纳,获得10
刚刚
柚子成精应助经法采纳,获得10
1秒前
小蘑菇应助经法采纳,获得10
1秒前
深情安青应助经法采纳,获得10
1秒前
李爱国应助经法采纳,获得10
1秒前
共享精神应助经法采纳,获得10
1秒前
yyyyyy完成签到 ,获得积分10
1秒前
LL完成签到,获得积分10
1秒前
ziyiziyi发布了新的文献求助10
2秒前
哈哈哈haha发布了新的文献求助40
2秒前
2秒前
啵乐乐完成签到,获得积分10
3秒前
哈哈完成签到,获得积分20
3秒前
4秒前
logic完成签到,获得积分10
4秒前
岁月轮回发布了新的文献求助10
4秒前
小离发布了新的文献求助10
4秒前
CodeCraft应助艺玲采纳,获得10
4秒前
chenjyuu完成签到,获得积分10
5秒前
韭黄发布了新的文献求助10
5秒前
5秒前
子车雁开完成签到,获得积分10
5秒前
6秒前
6秒前
故意的傲玉应助经法采纳,获得10
7秒前
上官若男应助经法采纳,获得10
7秒前
buno应助经法采纳,获得10
7秒前
1111应助经法采纳,获得10
7秒前
Lucas应助经法采纳,获得10
7秒前
Jasper应助经法采纳,获得10
7秒前
7秒前
习习应助经法采纳,获得10
7秒前
小鱼骑单车应助经法采纳,获得10
7秒前
辰柒发布了新的文献求助10
8秒前
英俊的铭应助经法采纳,获得10
8秒前
wgl发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759