Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0994完成签到 ,获得积分10
刚刚
852应助林加雄采纳,获得10
刚刚
1秒前
Criminology34应助Iris99采纳,获得10
1秒前
2秒前
Owen应助忧心的捕采纳,获得10
2秒前
小二郎应助ZiruiDing采纳,获得10
3秒前
3秒前
3秒前
3秒前
菜菜发布了新的文献求助10
3秒前
Akim应助啊懂采纳,获得10
4秒前
贰拾发布了新的文献求助10
4秒前
亚尔完成签到,获得积分10
4秒前
4秒前
ee发布了新的文献求助10
4秒前
科研通AI6应助棍棍来也采纳,获得10
5秒前
12345678发布了新的文献求助10
5秒前
5秒前
ZeKaWa应助堡主采纳,获得10
5秒前
21发布了新的文献求助10
6秒前
WD完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
科研通AI6应助Camellia采纳,获得10
6秒前
6秒前
酷炫翠柏发布了新的文献求助10
7秒前
胡春柳应助科研狂徒采纳,获得10
7秒前
求助人员应助anllo采纳,获得10
7秒前
8秒前
XianShen完成签到,获得积分10
8秒前
jin发布了新的文献求助10
8秒前
龙游天下完成签到,获得积分10
8秒前
许进文完成签到,获得积分10
8秒前
腼腆的冷玉完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
kimchiyak完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786