Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助任哥哥采纳,获得10
1秒前
完美世界应助菜鸟采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
Rosin发布了新的文献求助10
3秒前
小马甲应助榴莲采纳,获得10
3秒前
cecilia发布了新的文献求助10
4秒前
半圆亻发布了新的文献求助10
4秒前
英俊的铭应助xyx采纳,获得10
5秒前
5秒前
Beclin1完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Pupil完成签到,获得积分10
6秒前
龙溪完成签到,获得积分10
6秒前
积极的迎梦完成签到 ,获得积分10
7秒前
ccm应助sy采纳,获得10
8秒前
9秒前
9秒前
10秒前
自信谷冬完成签到,获得积分10
10秒前
解语花031发布了新的文献求助10
10秒前
丹妮完成签到,获得积分10
11秒前
聂xx完成签到,获得积分20
11秒前
菜鸟完成签到,获得积分10
11秒前
思源应助小燚采纳,获得10
11秒前
小豆芽博士完成签到,获得积分10
11秒前
子怡发布了新的文献求助10
12秒前
12秒前
黄梦娇完成签到,获得积分10
13秒前
永吉完成签到,获得积分10
14秒前
mumumuzzz完成签到,获得积分10
14秒前
木头人应助宁雨歆采纳,获得10
15秒前
聂xx发布了新的文献求助10
15秒前
15秒前
蒽女士发布了新的文献求助10
16秒前
王木木发布了新的文献求助10
17秒前
18秒前
18秒前
科研通AI6应助mumumuzzz采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972