Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
水沐菁华发布了新的文献求助10
2秒前
阿a发布了新的文献求助10
2秒前
3秒前
dcqqcd发布了新的文献求助10
4秒前
4秒前
5秒前
汉堡包应助糊涂的不尤采纳,获得10
7秒前
葡萄酒完成签到,获得积分20
8秒前
lily发布了新的文献求助10
9秒前
vikoer发布了新的文献求助10
9秒前
10秒前
11秒前
kf033完成签到 ,获得积分10
13秒前
搞怪的易槐完成签到,获得积分10
14秒前
细腻的歌曲完成签到,获得积分10
14秒前
大个应助小可爱采纳,获得10
14秒前
灰大壮壮完成签到,获得积分20
15秒前
21秒前
21秒前
李健应助888采纳,获得10
22秒前
糊涂的不尤完成签到 ,获得积分10
24秒前
vikoer完成签到,获得积分10
27秒前
27秒前
28秒前
小蘑菇应助霸气小懒猪采纳,获得10
28秒前
Tender完成签到,获得积分10
29秒前
开心市民小刘完成签到,获得积分10
29秒前
嘻嘻汐泽完成签到,获得积分10
30秒前
777完成签到 ,获得积分10
30秒前
灰大壮壮发布了新的文献求助10
31秒前
小可爱发布了新的文献求助10
33秒前
研友_VZG7GZ应助TT2022采纳,获得30
37秒前
38秒前
白日幻想家完成签到 ,获得积分10
38秒前
38秒前
不期发布了新的文献求助10
40秒前
42秒前
开朗的尔风完成签到,获得积分20
42秒前
华仔应助zhangzhi采纳,获得10
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994080
求助须知:如何正确求助?哪些是违规求助? 3534628
关于积分的说明 11266093
捐赠科研通 3274554
什么是DOI,文献DOI怎么找? 1806388
邀请新用户注册赠送积分活动 883254
科研通“疑难数据库(出版商)”最低求助积分说明 809724