Anomaly Detection using Generative Adversarial Networks Reviewing methodological progress and challenges

生成语法 计算机科学 对抗制 异常检测 生成对抗网络 数据科学 人工智能 机器学习 深度学习
作者
Fiete Lüer,Christian Böhm
出处
期刊:SIGKDD explorations [Association for Computing Machinery]
卷期号:25 (2): 29-41
标识
DOI:10.1145/3655103.3655109
摘要

The applications of Generative Adversarial Networks (GANs) are just as diverse as their architectures, problem settings as well as challenges. A key area of research on GANs is anomaly detection where they are most often utilized when only the data of one class is readily available. In this work, we organize, summarize and compare key concepts and challenges of anomaly detection based on GANs. Common problems which have to be investigated to progress the applicability of GANs are identified and discussed. This includes stability and time requirements during training as well as inference, the restriction of the latent space to produce solely data from the normal class distribution, contaminated training data as well as the composition of the resulting anomaly detection score. We discuss the problems using existing work as well as possible (partial) solutions, including related work from similar areas of research such as related generative models or novelty detection. Our findings are also relevant for a variety of closely related generative modeling approaches, such as autoencoders, and are of interest for areas of research tangent to anomaly detection such as image inpainting or image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我_我完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
li完成签到,获得积分10
刚刚
1秒前
1秒前
21GolDiamond完成签到,获得积分10
1秒前
1秒前
1秒前
Richard发布了新的文献求助10
2秒前
2秒前
积极向上完成签到,获得积分10
3秒前
3秒前
薛薛@发布了新的文献求助10
4秒前
cailun完成签到,获得积分20
4秒前
医痞子完成签到,获得积分10
5秒前
5秒前
TING发布了新的文献求助10
6秒前
6秒前
iaa发布了新的文献求助10
7秒前
余鑫发布了新的文献求助10
7秒前
lilyvan完成签到 ,获得积分10
7秒前
万能图书馆应助www采纳,获得10
7秒前
Hiro发布了新的文献求助10
7秒前
迷你的雅霜完成签到,获得积分10
7秒前
橙子完成签到,获得积分10
8秒前
阿鱼阿鱼发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
10秒前
11秒前
自由大叔发布了新的文献求助10
11秒前
11秒前
zzzzzz完成签到,获得积分10
11秒前
CipherSage应助ztt采纳,获得10
12秒前
英姑应助ztt采纳,获得10
12秒前
Rex发布了新的文献求助20
13秒前
wlxfrog完成签到,获得积分10
13秒前
慕青应助行7采纳,获得10
13秒前
土豆子完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244