Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators

均方误差 卷积神经网络 计算机科学 忠诚 人工神经网络 算法 傅里叶变换 公制(单位) 过程(计算) 机器学习 人工智能 数学 工程类 统计 数学分析 操作系统 电信 运营管理
作者
Jiangce Chen,Wenzhuo Xu,M.N. Baldwin,Björn Nijhuis,A.H. van den Boogaard,Noelia Grande Gutiérrez,Sneha P. Narra,Christopher McComb
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:146 (9) 被引量:1
标识
DOI:10.1115/1.4065316
摘要

Abstract High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. In addition, many models report a low mean-square error (MSE) across the entire domain of a part. However, in each time-step, most areas of the domain do not experience significant changes in temperature, except for the regions near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This article presents a data-driven model that uses the Fourier neural operator to capture the local temperature evolution during the AM process. Besides MSE, the model is also evaluated using the R2 metric, which places great weight on the regions where the temperature changes significantly than MSE. The model was trained and tested on numerical simulations based on the discontinuous Galerkin finite element method for the direct energy deposition AM process. The results shows that the model maintains 0.983−0.999 R2 over geometries not included in the training data, which is higher than convolutional neural networks and graph convolutional neural networks we implemented, the two widely used architectures in data-driven predictive modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
翟如风发布了新的文献求助10
1秒前
2秒前
心平气和完成签到,获得积分10
2秒前
大力荷花完成签到,获得积分10
4秒前
4秒前
小白白完成签到 ,获得积分10
4秒前
7秒前
小崔完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
NexusExplorer应助缥缈的铅笔采纳,获得10
11秒前
11秒前
11秒前
从容晓凡完成签到,获得积分20
12秒前
越野发布了新的文献求助10
13秒前
Lucas应助快乐保温杯采纳,获得10
14秒前
echo发布了新的文献求助10
15秒前
鱼圆杂铺完成签到,获得积分0
15秒前
17秒前
20秒前
大耳朵图图完成签到,获得积分10
20秒前
Lucas应助神揽星辰入梦采纳,获得10
21秒前
22秒前
虾虾完成签到,获得积分10
22秒前
chloe完成签到,获得积分20
22秒前
酷炫的凤妖完成签到,获得积分10
22秒前
华仔应助狂奔的蜗牛采纳,获得10
22秒前
23秒前
23秒前
深情安青应助美好焦采纳,获得10
24秒前
Lzt发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309