亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators

均方误差 卷积神经网络 计算机科学 忠诚 人工神经网络 算法 傅里叶变换 公制(单位) 过程(计算) 机器学习 人工智能 数学 工程类 统计 数学分析 操作系统 电信 运营管理
作者
Jiangce Chen,Wenzhuo Xu,M.N. Baldwin,Björn Nijhuis,A.H. van den Boogaard,Noelia Grande Gutiérrez,Sneha P. Narra,Christopher McComb
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:146 (9) 被引量:1
标识
DOI:10.1115/1.4065316
摘要

Abstract High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. In addition, many models report a low mean-square error (MSE) across the entire domain of a part. However, in each time-step, most areas of the domain do not experience significant changes in temperature, except for the regions near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This article presents a data-driven model that uses the Fourier neural operator to capture the local temperature evolution during the AM process. Besides MSE, the model is also evaluated using the R2 metric, which places great weight on the regions where the temperature changes significantly than MSE. The model was trained and tested on numerical simulations based on the discontinuous Galerkin finite element method for the direct energy deposition AM process. The results shows that the model maintains 0.983−0.999 R2 over geometries not included in the training data, which is higher than convolutional neural networks and graph convolutional neural networks we implemented, the two widely used architectures in data-driven predictive modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
科研通AI6应助zzeru21采纳,获得10
5秒前
科研通AI6应助zzeru21采纳,获得10
5秒前
mol完成签到 ,获得积分10
6秒前
空耳大师发布了新的文献求助10
9秒前
29秒前
39秒前
41秒前
41秒前
大模型应助zzeru21采纳,获得10
41秒前
科研通AI6应助zzeru21采纳,获得10
41秒前
科研通AI6应助zzeru21采纳,获得10
41秒前
43秒前
LALA发布了新的文献求助30
44秒前
窗子以外发布了新的文献求助10
48秒前
leyellows完成签到 ,获得积分10
50秒前
1998阿杰0526完成签到,获得积分10
1分钟前
窗子以外完成签到,获得积分10
1分钟前
fsznc完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
踏实的火龙果完成签到 ,获得积分10
1分钟前
做个读书人完成签到,获得积分10
1分钟前
1分钟前
天天天晴完成签到 ,获得积分10
1分钟前
zhangweny发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
123321发布了新的文献求助10
2分钟前
2分钟前
Jasper应助刘一采纳,获得10
2分钟前
2分钟前
Criminology34发布了新的文献求助100
2分钟前
东财波斯猫完成签到,获得积分10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401257
求助须知:如何正确求助?哪些是违规求助? 4520204
关于积分的说明 14079205
捐赠科研通 4433396
什么是DOI,文献DOI怎么找? 2434080
邀请新用户注册赠送积分活动 1426263
关于科研通互助平台的介绍 1404871