亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators

均方误差 卷积神经网络 计算机科学 忠诚 人工神经网络 算法 傅里叶变换 公制(单位) 过程(计算) 机器学习 人工智能 数学 工程类 统计 数学分析 操作系统 电信 运营管理
作者
Jiangce Chen,Wenzhuo Xu,M.N. Baldwin,Björn Nijhuis,A.H. van den Boogaard,Noelia Grande Gutiérrez,Sneha P. Narra,Christopher McComb
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:146 (9) 被引量:1
标识
DOI:10.1115/1.4065316
摘要

Abstract High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. In addition, many models report a low mean-square error (MSE) across the entire domain of a part. However, in each time-step, most areas of the domain do not experience significant changes in temperature, except for the regions near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This article presents a data-driven model that uses the Fourier neural operator to capture the local temperature evolution during the AM process. Besides MSE, the model is also evaluated using the R2 metric, which places great weight on the regions where the temperature changes significantly than MSE. The model was trained and tested on numerical simulations based on the discontinuous Galerkin finite element method for the direct energy deposition AM process. The results shows that the model maintains 0.983−0.999 R2 over geometries not included in the training data, which is higher than convolutional neural networks and graph convolutional neural networks we implemented, the two widely used architectures in data-driven predictive modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿亮完成签到,获得积分10
2秒前
ding应助石榴汁的书采纳,获得10
12秒前
14秒前
阿亮发布了新的文献求助20
15秒前
研友_VZG7GZ应助吴浣采纳,获得10
21秒前
21秒前
Orange应助Dreamchaser采纳,获得10
29秒前
45秒前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
科研通AI6应助tracer526采纳,获得10
1分钟前
1分钟前
冷傲迎梅完成签到 ,获得积分10
1分钟前
Jasper应助tracer526采纳,获得10
1分钟前
mc小胖羊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
罗伊黄发布了新的文献求助10
1分钟前
xiaoyu完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
火星上念梦完成签到,获得积分10
2分钟前
2分钟前
2分钟前
kkm完成签到,获得积分10
2分钟前
2分钟前
丘比特应助kkm采纳,获得10
2分钟前
yys10l完成签到,获得积分10
2分钟前
yys完成签到,获得积分10
2分钟前
mc小胖羊发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助tracer526采纳,获得10
2分钟前
浮游应助sherry采纳,获得10
2分钟前
2分钟前
3分钟前
tracer526发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418317
求助须知:如何正确求助?哪些是违规求助? 4534007
关于积分的说明 14143021
捐赠科研通 4450303
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432905
关于科研通互助平台的介绍 1410263