Capturing Local Temperature Evolution during Additive Manufacturing through Fourier Neural Operators

均方误差 卷积神经网络 计算机科学 忠诚 人工神经网络 算法 傅里叶变换 公制(单位) 过程(计算) 机器学习 人工智能 数学 工程类 统计 数学分析 操作系统 电信 运营管理
作者
Jiangce Chen,Wenzhuo Xu,M.N. Baldwin,Björn Nijhuis,A.H. van den Boogaard,Noelia Grande Gutiérrez,Sneha P. Narra,Christopher McComb
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:146 (9) 被引量:1
标识
DOI:10.1115/1.4065316
摘要

Abstract High-fidelity, data-driven models that can quickly simulate thermal behavior during additive manufacturing (AM) are crucial for improving the performance of AM technologies in multiple areas, such as part design, process planning, monitoring, and control. However, complexities of part geometries make it challenging for current models to maintain high accuracy across a wide range of geometries. In addition, many models report a low mean-square error (MSE) across the entire domain of a part. However, in each time-step, most areas of the domain do not experience significant changes in temperature, except for the regions near recent depositions. Therefore, the MSE-based fidelity measurement of the models may be overestimated. This article presents a data-driven model that uses the Fourier neural operator to capture the local temperature evolution during the AM process. Besides MSE, the model is also evaluated using the R2 metric, which places great weight on the regions where the temperature changes significantly than MSE. The model was trained and tested on numerical simulations based on the discontinuous Galerkin finite element method for the direct energy deposition AM process. The results shows that the model maintains 0.983−0.999 R2 over geometries not included in the training data, which is higher than convolutional neural networks and graph convolutional neural networks we implemented, the two widely used architectures in data-driven predictive modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助卜大大采纳,获得10
刚刚
1秒前
1秒前
吴亚运发布了新的文献求助10
1秒前
传奇3应助粗暴的海莲采纳,获得10
2秒前
2秒前
2秒前
3秒前
紫瓜发布了新的文献求助10
3秒前
坚定的寒松完成签到,获得积分10
3秒前
肥醒发布了新的文献求助10
4秒前
5秒前
6秒前
CodeCraft应助扣1送地狱火采纳,获得10
6秒前
所所应助微笑的友绿采纳,获得10
6秒前
威武语儿完成签到,获得积分10
6秒前
晓指晴天发布了新的文献求助10
7秒前
7秒前
灵巧绮晴发布了新的文献求助10
7秒前
爱宁的倩发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
8秒前
xu55完成签到,获得积分20
8秒前
8秒前
8秒前
Yi发布了新的文献求助10
9秒前
于大本事发布了新的文献求助10
10秒前
10秒前
10秒前
xu55发布了新的文献求助10
11秒前
大胆乐荷发布了新的文献求助30
11秒前
silence63完成签到,获得积分10
11秒前
11秒前
11秒前
GOD伟完成签到,获得积分0
11秒前
12秒前
可可完成签到,获得积分10
12秒前
13秒前
共享精神应助yi采纳,获得10
13秒前
pluto应助香丿采纳,获得10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602