神经病理性疼痛
表观遗传学
DNA甲基化
转录组
神经损伤
医学
生物信息学
神经科学
麻醉
生物
基因
遗传学
基因表达
作者
Zike Qin,Tao Tao,Fanning Zeng,Jian Cao,Zexuan Hong,Yitian Lu
标识
DOI:10.4103/1673-5374.371374
摘要
Epigenetic changes in the spinal cord play a key role in the initiation and maintenance of nerve injury-induced neuropathic pain. N6-methyladenosine (m6A) is one of the most abundant internal RNA modifications and plays an essential function in gene regulation in many diseases. However, the global m6A modification status of mRNA in the spinal cord at different stages after neuropathic pain is unknown. In this study, we established a neuropathic pain model in mice by preserving the complete sural nerve and only damaging the common peroneal nerve. High-throughput methylated RNA immunoprecipitation sequencing results showed that after spared nerve injury, there were 55 m6A methylated and differentially expressed genes in the spinal cord. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway results showed that m6A modification triggered inflammatory responses and apoptotic processes in the early stages after spared nerve injury. Over time, the differential gene function at postoperative day 7 was enriched in "positive regulation of neurogenesis" and "positive regulation of neural precursor cell proliferation." These functions suggested that altered synaptic morphological plasticity was a turning point in neuropathic pain formation and maintenance. Results at postoperative day 14 suggested that the persistence of neuropathic pain might be from lipid metabolic processes, such as "very-low-density lipoprotein particle clearance," "negative regulation of cholesterol transport" and "membrane lipid catabolic process." We detected the expression of m6A enzymes and found elevated mRNA expression of Ythdf2 and Ythdf3 after spared nerve injury modeling. We speculate that m6A reader enzymes also have an important role in neuropathic pain. These results provide a global landscape of mRNA m6A modifications in the spinal cord in the spared nerve injury model at different stages after injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI