An enhanced principal component analysis method with Savitzky–Golay filter and clustering algorithm for sensor fault detection and diagnosis

主成分分析 数据库扫描 聚类分析 算法 断层(地质) 噪音(视频) 计算机科学 故障检测与隔离 滤波器(信号处理) 数据挖掘 模式识别(心理学) 人工智能 计算机视觉 执行机构 树冠聚类算法 相关聚类 地震学 图像(数学) 地质学
作者
Shuqing Wen,Weirong Zhang,Yifu Sun,Zhenxi Li,Boju Huang,Shouguo Bian,Lin Zhao,Yan Wang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:337: 120862-120862 被引量:35
标识
DOI:10.1016/j.apenergy.2023.120862
摘要

Sensors are critical components of heating, ventilation, and air-conditioning systems. Sensor faults can impact control regulations, resulting in an uncomfortable indoor environment and energy wastage. To detect and identify sensor faults quickly, this study proposes an enhanced principal component analysis (PCA) method using the Savitzky–Golay (SG) filter and density-based spatial clustering of applications with noise (DBSCAN) algorithm. First, the DBSCAN algorithm is used to automatically divide the dataset into sub-datasets with different working conditions to reduce the interference information and concentrate the information of each training set. Then, each sub-dataset is smoothed using the SG algorithm to reduce the effects of data fluctuations. The processed dataset is used to build a sub-PCA model that ultimately identifies and locates faults. The proposed strategy is validated using field operating data for 20 air-handling unit (AHU) systems, as obtained from a large commercial building. The fault detection performances of multiple strategies are compared and analysed under different degrees of bias in single AHU and multiple AHU systems. The verification results show that the proposed DBSCAN-SG-PCA model offers significant improvements in fault detection accuracy and fault identification sensitivity over the conventional PCA method. Compared with the SG-PCA model, the proposed model reduces the amount of data required for fault detection by an average of 13.7%, and the Youden index is increased by an average of 0.21. Furthermore, the fault detection accuracy of the proposed model is ±0.7 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助jy采纳,获得10
1秒前
健忘绿茶发布了新的文献求助10
1秒前
1秒前
1秒前
男神z完成签到,获得积分10
2秒前
勤奋的金毛关注了科研通微信公众号
4秒前
小酥肉发布了新的文献求助10
5秒前
5秒前
可爱的函函应助葛稀采纳,获得10
6秒前
lilei发布了新的文献求助10
7秒前
王桃矢发布了新的文献求助10
7秒前
8秒前
8秒前
yu完成签到,获得积分10
9秒前
SciGPT应助今昔采纳,获得10
9秒前
heheha发布了新的文献求助10
10秒前
斯文败类应助爱听歌CC采纳,获得10
10秒前
花城诚成完成签到,获得积分10
10秒前
青竹妈妈完成签到,获得积分10
11秒前
focco完成签到,获得积分10
11秒前
翟语雪完成签到,获得积分10
11秒前
tfiny发布了新的文献求助10
12秒前
12秒前
jiayou完成签到,获得积分10
13秒前
韦威风发布了新的文献求助10
13秒前
呆呆要努力完成签到 ,获得积分10
14秒前
14秒前
酷波er应助ff采纳,获得10
15秒前
16秒前
16秒前
16秒前
可爱的函函应助fun采纳,获得10
16秒前
17秒前
18秒前
wzc发布了新的文献求助10
18秒前
今昔完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
blake完成签到,获得积分10
20秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and How Use PHEs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3701957
求助须知:如何正确求助?哪些是违规求助? 3251981
关于积分的说明 9877418
捐赠科研通 2964034
什么是DOI,文献DOI怎么找? 1625427
邀请新用户注册赠送积分活动 770018
科研通“疑难数据库(出版商)”最低求助积分说明 742722