欧姆接触
材料科学
硫黄
锂(药物)
异质结
催化作用
离子
电子传输链
光电子学
纳米技术
化学工程
无机化学
化学
有机化学
医学
生物化学
图层(电子)
内分泌学
工程类
冶金
作者
Jing‐Zhou Chen,Ziang Li,Jia‐Ting Lei,Peipei Chen,Dong‐Lin Zhao
出处
期刊:Small
[Wiley]
日期:2024-11-09
标识
DOI:10.1002/smll.202408284
摘要
Abstract Although lithium‐sulfur batteries have satisfactory theoretical specific capacity and energy density, they are difficult to further commercialize due to the shuttle effect of soluble polysulfides and slow sulfur oxidation kinetics. Based on this, in this work, the catalyst MXene‐VS 4 ‐SnS 2 (MVS), a dual heterostructured catalyst with ohmic contacts, is prepared by a one‐step hydrothermal method and electrostatic self‐adsorption for lithium‐sulfur battery cathode materials. Experimental and theoretical results show that the ohmic contact induces spontaneous charge rearrangement, resulting in the formation of a fast charge transfer pathway at the MVS heterojunction interface, which helps to reduce the energy barrier for polysulfide reduction and Li 2 S oxidation during the discharge/charge process. In addition, the inherent sulfophilicity of VS 4 and SnS 2 promotes the conversion of S species, while the pleated MXene nanosheets not only provide a highly conductive network for the active sulfur but also retain a rich internal space to maintain the integrity of the cathode structure during the continuous cycling process. As a result, the MVS cathode exhibits excellent electrochemical performance even under high sulfur loading. The integration of excellent performance with a facile synthesis process provides a promising approach for designing highly efficient electrocatalysts suitable for the energy field.
科研通智能强力驱动
Strongly Powered by AbleSci AI