Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小白想发好文章采纳,获得10
1秒前
chensiying完成签到 ,获得积分10
3秒前
5秒前
情怀应助kjding采纳,获得10
5秒前
李健应助漂亮的如容采纳,获得10
6秒前
6秒前
6秒前
Akim应助jiujiuhuang采纳,获得30
7秒前
10秒前
夏夜完成签到,获得积分10
10秒前
高高完成签到,获得积分10
10秒前
峰1992发布了新的文献求助30
10秒前
11秒前
13秒前
万能图书馆应助小跳蚤采纳,获得10
14秒前
Mars夜愿发布了新的文献求助10
14秒前
14秒前
15秒前
浅辰发布了新的文献求助10
15秒前
言小言完成签到 ,获得积分20
16秒前
斯文宛秋发布了新的文献求助10
16秒前
16秒前
jiujiuhuang发布了新的文献求助30
18秒前
19秒前
小松松完成签到,获得积分10
19秒前
贪玩的访风完成签到 ,获得积分10
20秒前
三叔应助Puan采纳,获得10
21秒前
常常发布了新的文献求助10
22秒前
B1ackSugar完成签到,获得积分10
23秒前
CipherSage应助zlenetr采纳,获得10
24秒前
loong完成签到,获得积分10
25秒前
25秒前
25秒前
27秒前
英俊的铭应助苞米公主采纳,获得10
28秒前
向觅夏完成签到,获得积分10
28秒前
30秒前
十四季白发布了新的文献求助10
30秒前
30秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804