Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:1
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的芹应助山河入梦来采纳,获得10
1秒前
慕青应助banbieshenlu采纳,获得10
1秒前
1秒前
1秒前
2秒前
小二郎应助科研yuan小白采纳,获得10
2秒前
2秒前
yyy发布了新的文献求助10
3秒前
3秒前
3秒前
zhshyhy完成签到,获得积分10
4秒前
4秒前
挖掘机应助斯奈克采纳,获得200
4秒前
甜味白开水完成签到,获得积分10
5秒前
研友_ngX12Z发布了新的文献求助10
5秒前
花鸟风月evereo完成签到,获得积分10
5秒前
菠萝炒饭应助王三采纳,获得10
6秒前
pppy发布了新的文献求助10
6秒前
郭大王发布了新的文献求助10
6秒前
煜琪发布了新的文献求助10
7秒前
7秒前
crethy完成签到,获得积分10
7秒前
Henry发布了新的文献求助10
7秒前
Akim应助李明采纳,获得10
8秒前
tdd完成签到,获得积分10
8秒前
无私的芹应助黄俊采纳,获得10
8秒前
bofu发布了新的文献求助30
9秒前
www发布了新的文献求助10
9秒前
Owen应助youlingduxiu采纳,获得30
9秒前
叶文言发布了新的文献求助10
9秒前
Avery完成签到 ,获得积分10
9秒前
9秒前
cTiyAmo完成签到,获得积分10
9秒前
10秒前
科研狗完成签到,获得积分10
10秒前
未命名发布了新的文献求助20
11秒前
12秒前
12秒前
Jasper应助张一二二二采纳,获得10
12秒前
CC发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951972
求助须知:如何正确求助?哪些是违规求助? 3497327
关于积分的说明 11086901
捐赠科研通 3228016
什么是DOI,文献DOI怎么找? 1784585
邀请新用户注册赠送积分活动 868794
科研通“疑难数据库(出版商)”最低求助积分说明 801180