亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
zjl123发布了新的文献求助10
13秒前
13秒前
星际舟完成签到,获得积分10
26秒前
刘轶敏发布了新的文献求助10
33秒前
欢喜的大山完成签到,获得积分10
40秒前
43秒前
jesse2j2发布了新的文献求助10
48秒前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
cacaldon发布了新的文献求助10
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
cacaldon完成签到,获得积分10
2分钟前
2分钟前
滑稽剑客发布了新的文献求助10
2分钟前
Kashing完成签到,获得积分10
3分钟前
3分钟前
保持好心情完成签到 ,获得积分10
3分钟前
3分钟前
CipherSage应助虚幻的凌柏采纳,获得10
3分钟前
3分钟前
旨酒欣欣完成签到,获得积分10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
4分钟前
Owen应助你估下我叫乜嘢名采纳,获得10
4分钟前
4分钟前
虚幻的凌柏完成签到,获得积分10
4分钟前
pluto应助君灵毓秀采纳,获得20
4分钟前
pluto应助美满惜海采纳,获得10
5分钟前
科研通AI2S应助风华正茂采纳,获得30
5分钟前
YifanWang完成签到,获得积分0
6分钟前
酷波er应助科研通管家采纳,获得10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
6分钟前
pluto应助想毕业的王桑~采纳,获得20
6分钟前
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749950
求助须知:如何正确求助?哪些是违规求助? 3293207
关于积分的说明 10080077
捐赠科研通 3008546
什么是DOI,文献DOI怎么找? 1652286
邀请新用户注册赠送积分活动 787340
科研通“疑难数据库(出版商)”最低求助积分说明 752090