Predicting early recurrence in locally advanced gastric cancer after gastrectomy Using CT-based deep learning model: a multicenter study

医学 接收机工作特性 人工智能 内科学 多层感知器 肿瘤科 机器学习 放射科 计算机科学 人工神经网络
作者
Xinyu Guo,Mingzhen Chen,Lingling Zhou,Lingyi Zhu,Shuang Liu,Liyun Zheng,Yongjun Chen,Qiang Li,Shuiwei Xia,Chenying Lu,Minjiang Chen,Feng Chen,Jiansong Ji
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000002184
摘要

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Prediction of early recurrence may help determine treatment strategies for LAGC. To develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and further explore the underlying biological basis of the proposed model. Materials and methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centres and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron classifier (MLP) model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA. Results: Using the MLP classifier combined with clinical factors, DLR MLP showed higher performance than DLER and clinical models in predicting early recurrence in internal validation set (AUC: 0.891 vs 0.797, 0.752), two external test set1 (0.814 vs. 0.666, 0.808) and external test2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < .001). High DLER MLP score is associated with upregulated tumour proliferation pathways (WNT, MYC, and KRAS signalling) and immune cell infiltration in the tumour microenvironment. Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要清涟完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
BaiX发布了新的文献求助10
1秒前
1秒前
路旁小白完成签到,获得积分10
1秒前
枫桥完成签到 ,获得积分10
1秒前
彭于晏应助zhonghbush采纳,获得10
2秒前
秦玉蓉完成签到,获得积分10
2秒前
小文cremen完成签到 ,获得积分10
3秒前
Owen应助千里采纳,获得10
4秒前
o10发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
紧张的梦岚应助开放雁丝采纳,获得20
4秒前
淇淇怪怪发布了新的文献求助10
5秒前
深情安青应助呼叫554采纳,获得30
5秒前
zhuiyu完成签到,获得积分10
5秒前
鲜艳的手链完成签到,获得积分10
5秒前
知性的以筠完成签到,获得积分10
6秒前
leiyang49完成签到,获得积分10
6秒前
6秒前
李小伟完成签到,获得积分10
7秒前
7秒前
铁匠发布了新的文献求助10
8秒前
Jupiter完成签到,获得积分10
8秒前
zsqqqqq完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
二二二发布了新的文献求助10
10秒前
完美世界应助nihil采纳,获得10
11秒前
11秒前
cd发布了新的文献求助10
11秒前
过时的丹秋完成签到 ,获得积分10
12秒前
12秒前
成就缘分完成签到,获得积分10
12秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
12秒前
一米阳光完成签到,获得积分10
13秒前
深情安青应助April采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672