材料科学
热电效应
化学工程
壳聚糖
塞贝克系数
多孔性
层状结构
热电材料
复合材料
热导率
热力学
物理
工程类
作者
Xiaohan Sun,M Zhang,Haisong Qi,Pan Chen,Jipeng Zhang,Ang Lu
标识
DOI:10.1002/adfm.202419762
摘要
Abstract Thermoelectric materials, as key materials for realizing efficient conversion of thermal and electrical energy, are crucial for renewable energy utilization and efficient energy management. However, materials with high negative thermoelectric coefficients are relatively rare. Herein, inspired by the structure and function of plant stem which is capable of blocking heavy metal ions, chitosan/CuCl 2 hydrogel (ChCu) with a huge negative thermoelectric coefficient is reported. The ChCu displayed lamellar porous structure, which is constructed synergistically by freeze‐casting technique and complexation between Cu 2+ and chitosan. In a ChCu hydrogel subjected to a temperature gradient, most of the Cu 2+ is immobilized within the chitosan matrix by complexation, while the thermal migration of the unbound Cu 2+ is further intercepted by the special layered porous structure. On the contrary, Cl − migrates unhindered to the cold end and accumulates, which realizes selective migration and distribution of ion/counterion. As a result, ChCu exhibits a thermoelectric coefficient as high as ‐23.8 mV K −1 , and can respond rapidly with a thermal voltage of 4.0 mV under a small temperature difference (ΔT = 0.3 K). This work reveals the significant influence of the polymer aggregate structure on the thermal diffusion of ions, providing an innovative strategy in designating thermoelectric materials with high‐performance, high‐efficiency and environmentally friendly.
科研通智能强力驱动
Strongly Powered by AbleSci AI