Characterization of mycophage endolysin cell wall binding domains targeting Mycobacterium bovis peptidoglycan

肽聚糖 赖氨酸 牛分枝杆菌 生物 生物化学 细胞壁 微生物学 结核分枝杆菌 噬菌体 肺结核 医学 基因 病理 大肠杆菌
作者
A. Van Ítterbeek,Amber Possemiers,Yunus Colak,Leonard E. Bäcker,Abram Aertsen,Rob Lavigne,Jan Paeshuyse
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier BV]
卷期号:681: 291-297
标识
DOI:10.1016/j.bbrc.2023.09.027
摘要

Mycophage endolysins are highly diverse and modular enzymes composed of domains involved in peptidoglycan binding and degradation. Mostly, they are characterized by a three-module design: an N-terminal peptidase domain, a central catalytic domain and a C-terminal peptidoglycan binding domain. Previously, the affinity of cell wall binding domains (CBDs) to the mycobacterial peptidoglycan layer was shown for some of these endolysins. In this study, an in depth screening was performed on twelve mycophage endolysins. The discovered CBDs were characterized for their binding affinity to Mycobacterium (M.) bovis bacille Calmette-Guérin (BCG), a largely unexplored target and an attenuated strain of M. bovis, responsible for bovine tuberculosis. Using homology-based annotation, only four endolysins showed the presence of a known peptidoglycan binding domain, the previously characterized pfam 01471 domain. However, analysis of the secondary structure aided by AlphaFold predictions revealed the presence of a C-terminal domain in the other endolysins. These were hypothesized as new, uncharacterized CBDs. Fusion proteins composed of these domains linked to GFP were constructed and positively assayed for their affinity to M. bovis BCG in a peptidoglycan binding assay. Moreover, two CBDs were able to fluorescently label M. bovis BCG in milk samples, highlighting the potential to further explore their possibility to function as CBD-based diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助pppq采纳,获得20
刚刚
Cccsy完成签到,获得积分10
1秒前
星辰发布了新的文献求助30
2秒前
负责凛完成签到,获得积分10
2秒前
冰西瓜完成签到 ,获得积分10
3秒前
huk发布了新的文献求助10
4秒前
4秒前
大个应助Mudiay采纳,获得10
5秒前
6秒前
6秒前
SciGPT应助闪闪的屁股采纳,获得10
7秒前
yaoyh_gc发布了新的文献求助10
8秒前
8秒前
8秒前
搜集达人应助吉吉采纳,获得10
10秒前
CipherSage应助Silole采纳,获得10
10秒前
称心寒松发布了新的文献求助10
11秒前
ding应助佳凝采纳,获得10
11秒前
12秒前
善学以致用应助优秀凌青采纳,获得10
12秒前
13秒前
神秘玩家发布了新的文献求助10
14秒前
科研通AI5应助星辰采纳,获得10
14秒前
17秒前
18秒前
18秒前
皮肤专硕小白一枚完成签到,获得积分10
20秒前
20秒前
20秒前
21秒前
22秒前
烟花应助Caden采纳,获得10
22秒前
Serein完成签到,获得积分10
22秒前
oooo发布了新的文献求助10
23秒前
24秒前
Sam十九完成签到 ,获得积分10
24秒前
24秒前
共享精神应助清脆的书桃采纳,获得10
24秒前
Silole发布了新的文献求助10
24秒前
旸里完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740976
求助须知:如何正确求助?哪些是违规求助? 3283817
关于积分的说明 10036983
捐赠科研通 3000610
什么是DOI,文献DOI怎么找? 1646618
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427