Evolution Through Large Models

Python(编程语言) 计算机科学 人工智能 遗传程序设计 背景(考古学) 地形 领域(数学分析) 强化学习 编码(集合论) 机器学习 程序设计语言 地理 数学分析 地图学 考古 集合(抽象数据类型) 数学
作者
Joel Lehman,Jonathan Gordon,Shawn Jain,Kamal Ndousse,Cathy Yeh,Kenneth O. Stanley
出处
期刊:Genetic and evolutionary computation 卷期号:: 331-366 被引量:20
标识
DOI:10.1007/978-981-99-3814-8_11
摘要

This chapter pursues the insightInsight that large language modelsLarge language models (LLMs) trained to generate code can vastly improve the effectiveness of mutation operators applied to programs in genetic programming (GP). Because such LLMs benefit from training data that includes sequential changes and modifications, they can approximate likely changes that humans would make. To highlight the breadth of implications of such evolution through large models (ELM), inEvolution through Large Models the main experiment ELM combined with MAP-ElitesMAP-Elites generates hundreds of thousands of functional examples of Python programs that output working ambulating robots in the SodaraceSodarace domain, which the original LLM had never seen in pretraining. These examples then help to bootstrapBootstrap training a new conditional language model that can output the right walker for a particular terrain. The ability to bootstrapBootstrap new models that can output appropriate artifacts for a given context in a domain where zero training data was previously available carries implications for open-endednessOpen-endedness, deep learning, and reinforcement learningReinforcement Learning. These implications are explored here in depth in the hope of inspiring new directions of research now opened up by ELM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
Akim应助科研通管家采纳,获得10
1秒前
Jasper应助石家豪采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得30
2秒前
顾矜应助Vanness采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
可不乐完成签到,获得积分10
2秒前
xzn1123应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
小新应助科研通管家采纳,获得10
3秒前
xzn1123应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
甜甜青文完成签到 ,获得积分10
4秒前
Orange应助拼搏的桐采纳,获得30
4秒前
憨憨发布了新的文献求助10
5秒前
zhi完成签到,获得积分10
6秒前
勉乎哉发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337