Early prediction of growth patterns after pediatric kidney transplantation based on height-related single-nucleotide polymorphisms.

医学 肾移植 移植 队列 单核苷酸多态性 单变量分析 内科学 回顾性队列研究 肾脏疾病 肿瘤科 儿科 多元分析 生物 遗传学 基因型 基因
作者
Yue Feng,Yue Feng,Mingxing Hu,Hongen Xu,Zhigang Wang,Shicheng Xu,Yongchuang Yan,Chun Feng,Li Zhou,Feng Gao,Wenjun Shang
出处
期刊:PubMed
标识
DOI:10.1097/cm9.0000000000002828
摘要

Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables.A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from September 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction.The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796).A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
SamuelLiu完成签到,获得积分10
4秒前
5秒前
清爽乐菱应助苏卿采纳,获得30
6秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
天天发布了新的文献求助50
12秒前
小橘子发布了新的文献求助10
13秒前
14秒前
酷波er应助YoursSummer采纳,获得10
14秒前
若水完成签到,获得积分10
16秒前
16秒前
饼饼发布了新的文献求助10
17秒前
我是老大应助糟糕的铁锤采纳,获得50
19秒前
情怀应助满意的盼夏采纳,获得10
20秒前
核桃应助研友_xnEOX8采纳,获得60
21秒前
22秒前
yar应助WD采纳,获得10
24秒前
小白完成签到,获得积分10
27秒前
雯子完成签到,获得积分10
30秒前
30秒前
32秒前
34秒前
北彧发布了新的文献求助10
35秒前
38秒前
小二郎应助cheers采纳,获得10
38秒前
38秒前
41秒前
天天发布了新的文献求助50
42秒前
烧炭匠完成签到,获得积分10
46秒前
杨自强发布了新的文献求助10
46秒前
47秒前
CAOHOU应助wsf2023采纳,获得10
48秒前
秃头钙钛矿完成签到,获得积分10
48秒前
maomao发布了新的文献求助10
49秒前
50秒前
大模型应助坚强慕蕊采纳,获得10
51秒前
梁小氓完成签到 ,获得积分10
52秒前
11完成签到 ,获得积分10
52秒前
Akim应助科研通管家采纳,获得10
52秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182