Early prediction of growth patterns after pediatric kidney transplantation based on height-related single-nucleotide polymorphisms.

医学 肾移植 移植 队列 单核苷酸多态性 单变量分析 内科学 回顾性队列研究 肾脏疾病 肿瘤科 儿科 多元分析 生物 遗传学 基因型 基因
作者
Yue Feng,Yue Feng,Mingxing Hu,Hongen Xu,Zhigang Wang,Shicheng Xu,Yongchuang Yan,Chun Feng,Li Zhou,Feng Gao,Wenjun Shang
出处
期刊:PubMed
标识
DOI:10.1097/cm9.0000000000002828
摘要

Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables.A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from September 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction.The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796).A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bowen完成签到,获得积分10
1秒前
小九九发布了新的文献求助10
1秒前
孤独雪柳完成签到,获得积分20
1秒前
W_shuai发布了新的文献求助10
1秒前
2秒前
斯文的傲珊完成签到,获得积分10
2秒前
传奇3应助胡呼呼采纳,获得10
2秒前
feng完成签到,获得积分10
2秒前
3秒前
梁珂源发布了新的文献求助10
3秒前
niubi4完成签到,获得积分10
3秒前
3秒前
DA完成签到,获得积分10
4秒前
研友_5Y9X75发布了新的文献求助10
5秒前
5秒前
5秒前
李梦想发布了新的文献求助10
5秒前
Owen应助蹄子采纳,获得10
5秒前
个性的紫菜应助hqy采纳,获得20
5秒前
852应助真实的青曼采纳,获得10
5秒前
小二郎应助激情的白枫采纳,获得10
5秒前
顺心飞雪完成签到,获得积分10
5秒前
6秒前
细腻初柳发布了新的文献求助30
6秒前
不冰淇淋完成签到,获得积分10
7秒前
栾瑜宝发布了新的文献求助10
7秒前
韩小花完成签到,获得积分10
7秒前
jianhan发布了新的文献求助10
8秒前
8秒前
8秒前
有魅力的彩虹完成签到,获得积分20
9秒前
www完成签到 ,获得积分10
9秒前
9秒前
Hello应助小福采纳,获得10
9秒前
窦誉发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助王硕小傻狗采纳,获得10
10秒前
10秒前
古道作家发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604223
求助须知:如何正确求助?哪些是违规求助? 4012672
关于积分的说明 12424560
捐赠科研通 3693322
什么是DOI,文献DOI怎么找? 2036160
邀请新用户注册赠送积分活动 1069258
科研通“疑难数据库(出版商)”最低求助积分说明 953730