Early prediction of growth patterns after pediatric kidney transplantation based on height-related single-nucleotide polymorphisms.

医学 肾移植 移植 队列 单核苷酸多态性 单变量分析 内科学 回顾性队列研究 肾脏疾病 肿瘤科 儿科 多元分析 生物 遗传学 基因型 基因
作者
Yue Feng,Yue Feng,Mingxing Hu,Hongen Xu,Zhigang Wang,Shicheng Xu,Yongchuang Yan,Chun Feng,Li Zhou,Feng Gao,Wenjun Shang
出处
期刊:PubMed
标识
DOI:10.1097/cm9.0000000000002828
摘要

Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables.A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from September 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction.The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796).A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助忧虑的鼠标采纳,获得10
刚刚
1秒前
1秒前
科研通AI2S应助研友_LMBAXn采纳,获得10
2秒前
3秒前
想退休了完成签到 ,获得积分10
3秒前
张亚雪完成签到,获得积分10
5秒前
熊熊发布了新的文献求助10
6秒前
7秒前
lwl发布了新的文献求助10
8秒前
李杰完成签到,获得积分10
8秒前
HAHAHA完成签到 ,获得积分10
10秒前
lyc完成签到,获得积分10
12秒前
淡然安雁完成签到,获得积分10
12秒前
13秒前
七七完成签到 ,获得积分10
14秒前
14秒前
忧郁绣连应助jzyy采纳,获得10
15秒前
Song发布了新的文献求助10
18秒前
peachsweet完成签到,获得积分10
18秒前
19秒前
深海鳕鱼完成签到,获得积分10
20秒前
繁荣的寻芹完成签到,获得积分10
21秒前
wll发布了新的文献求助10
22秒前
天真过客发布了新的文献求助10
22秒前
wenze发布了新的文献求助10
22秒前
23秒前
24秒前
25秒前
充电宝应助Song采纳,获得10
26秒前
烂漫的紫槐完成签到,获得积分10
27秒前
归海梦岚发布了新的文献求助30
28秒前
Jieh完成签到,获得积分10
28秒前
LJHUA完成签到,获得积分10
28秒前
XL完成签到,获得积分10
28秒前
红箭烟雨发布了新的文献求助10
29秒前
wangayting发布了新的文献求助30
29秒前
外向如冬完成签到 ,获得积分10
29秒前
俊逸的咖啡完成签到,获得积分10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137930
求助须知:如何正确求助?哪些是违规求助? 2788832
关于积分的说明 7788793
捐赠科研通 2445241
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046