Early prediction of growth patterns after pediatric kidney transplantation based on height-related single-nucleotide polymorphisms.

医学 肾移植 移植 队列 单核苷酸多态性 单变量分析 内科学 回顾性队列研究 肾脏疾病 肿瘤科 儿科 多元分析 生物 遗传学 基因型 基因
作者
Yue Feng,Yue Feng,Mingxing Hu,Hongen Xu,Zhigang Wang,Shicheng Xu,Yongchuang Yan,Chun Feng,Li Zhou,Feng Gao,Wenjun Shang
出处
期刊:PubMed
标识
DOI:10.1097/cm9.0000000000002828
摘要

Growth retardation is a common complication of chronic kidney disease in children, which can be partially relieved after renal transplantation. This study aimed to develop and validate a predictive model for growth patterns of children with end-stage renal disease (ESRD) after kidney transplantation using machine learning algorithms based on genomic and clinical variables.A retrospective cohort of 110 children who received kidney transplants between May 2013 and September 2021 at the First Affiliated Hospital of Zhengzhou University were recruited for whole-exome sequencing (WES), and another 39 children who underwent transplant from September 2021 to March 2022 were enrolled for external validation. Based on previous studies, we comprehensively collected 729 height-related single-nucleotide polymorphisms (SNPs) in exon regions. Seven machine learning algorithms and 10-fold cross-validation analysis were employed for model construction.The 110 children were divided into two groups according to change in height-for-age Z-score. After univariate analysis, age and 19 SNPs were incorporated into the model and validated. The random forest model showed the best prediction efficacy with an accuracy of 0.8125 and an area under curve (AUC) of 0.924, and also performed well in the external validation cohort (accuracy, 0.7949; AUC, 0.796).A model with good performance for predicting post-transplant growth patterns in children based on SNPs and clinical variables was constructed and validated using machine learning algorithms. The model is expected to guide clinicians in the management of children after renal transplantation, including the use of growth hormone, glucocorticoid withdrawal, and nutritional supplementation, to alleviate growth retardation in children with ESRD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注之双完成签到,获得积分10
1秒前
黑山羊完成签到,获得积分10
2秒前
飞儿完成签到,获得积分10
2秒前
闵SUGA发布了新的文献求助10
2秒前
无极微光应助过时的寄真采纳,获得20
3秒前
机灵冬灵完成签到 ,获得积分10
3秒前
顺利毕业发布了新的文献求助10
4秒前
香蕉冰真完成签到,获得积分10
5秒前
蓝冰完成签到,获得积分10
5秒前
lllll1243完成签到,获得积分10
6秒前
6秒前
用户5063899完成签到,获得积分10
6秒前
光亮的青文完成签到 ,获得积分10
7秒前
xrf完成签到,获得积分10
8秒前
oxygen253完成签到,获得积分10
8秒前
一棵树完成签到,获得积分10
8秒前
科研通AI6应助月星采纳,获得10
8秒前
WATQ应助ydby27采纳,获得10
10秒前
11秒前
13秒前
秋秋完成签到 ,获得积分10
14秒前
科研小白完成签到,获得积分10
14秒前
海人完成签到 ,获得积分10
16秒前
16秒前
LATP发布了新的文献求助10
17秒前
17秒前
18秒前
ikun0000完成签到,获得积分10
19秒前
王彤彤发布了新的文献求助10
19秒前
酒尚温完成签到 ,获得积分10
20秒前
song完成签到,获得积分10
20秒前
21秒前
刘佳宇完成签到,获得积分10
21秒前
67号发布了新的文献求助10
22秒前
ydby27完成签到,获得积分10
22秒前
西因应助上官从波采纳,获得10
22秒前
23秒前
长留完成签到 ,获得积分10
23秒前
轧贝葡胺完成签到,获得积分10
23秒前
成就的巨人完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685826
关于积分的说明 14839777
捐赠科研通 4674981
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471124