机器学习
主动学习(机器学习)
人工智能
计算机科学
稳健性(进化)
灵活性(工程)
计算学习理论
超启发式
在线机器学习
自动化
机器人学习
工程类
机器人
移动机器人
机械工程
生物化学
化学
统计
数学
基因
作者
Yannick Ureel,Maarten R. Dobbelaere,Yi Ouyang,Kevin De Ras,Maarten K. Sabbe,Guy Marin,Kevin M. Van Geem
出处
期刊:Engineering
[Elsevier BV]
日期:2023-08-01
卷期号:27: 23-30
被引量:10
标识
DOI:10.1016/j.eng.2023.02.019
摘要
By combining machine learning with the design of experiments, thereby achieving so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible and are better than traditional design of experiment algorithms at investigating processes spanning all length scales of chemical engineering. While active machine learning algorithms are maturing, their applications are falling behind. In this article, three types of challenges presented by active machine learning—namely, convincing the experimental researcher, the flexibility of data creation, and the robustness of active machine learning algorithms—are identified, and ways to overcome them are discussed. A bright future lies ahead for active machine learning in chemical engineering, thanks to increasing automation and more efficient algorithms that can drive novel discoveries.
科研通智能强力驱动
Strongly Powered by AbleSci AI