Competing mechanisms govern the thermal rectification behavior in semi-stochastic polycrystalline graphene with graded grain-size distribution

石墨烯 材料科学 热导率 声子 微晶 整改 晶界 热的 凝聚态物理 纳米技术 复合材料 物理 热力学 微观结构 功率(物理) 冶金
作者
Simanta Lahkar,Raghavan Ranganathan
出处
期刊:Carbon [Elsevier BV]
卷期号:218: 118638-118638
标识
DOI:10.1016/j.carbon.2023.118638
摘要

Thermal rectifiers are devices that have different thermal conductivities in opposing directions of heat flow. The realization of practical thermal rectifiers relies significantly on a sound understanding of the underlying mechanisms of asymmetric heat transport, and two-dimensional materials offer a promising opportunity in this regard owing to their simplistic structures together with a vast possibility of tunable imperfections. However, the in-plane thermal rectification mechanisms in 2D materials like graphene having directional gradients of grain sizes have remained elusive. In fact, understanding the heat transport mechanisms in polycrystalline graphene, which are more practical to synthesize than large-scale single-crystal graphene, could potentially allow a unique opportunity, in principle, to combine with other defects and designs for effective optimization of thermal rectification. In this work, we investigate the thermal rectification behavior in periodic atomistic models of polycrystalline graphene whose grain arrangements were generated semi-stochastically to have different gradient grain-density distributions along the in-plane heat flow direction. We employ the centroidal Voronoi tessellation technique to generate realistic grain boundary structures for graphene, and the non-equilibrium molecular dynamics simulations method is used to calculate the thermal conductivities and rectification values. Additionally, detailed phonon characteristics and propagating phonon spatial energy densities are analyzed based on the fluctuation-dissipation theory to elucidate the competitive interplay between two underlying mechanisms, namely, (1) propagating phonon coupling and (2) temperature-dependence of thermal conductivity that determine the degree of asymmetric heat flow in graded polycrystalline graphene.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助肖小张采纳,获得10
1秒前
西瓜完成签到,获得积分10
1秒前
1秒前
啦啦啦完成签到,获得积分10
1秒前
lllfff发布了新的文献求助10
2秒前
李明发布了新的文献求助10
2秒前
2秒前
2秒前
zcious完成签到,获得积分10
3秒前
Layer发布了新的文献求助10
3秒前
5秒前
蔡兆鈞完成签到,获得积分10
5秒前
虚幻仇血发布了新的文献求助20
6秒前
wangrblzu应助tongxiehou1采纳,获得10
7秒前
7秒前
8秒前
脑洞疼应助aqiu采纳,获得10
9秒前
打打应助浩浩浩采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
思源应助cch采纳,获得10
10秒前
SYLH应助翻滚的肉夹馍采纳,获得10
10秒前
10秒前
王陈龙发布了新的文献求助10
10秒前
ljj发布了新的文献求助10
10秒前
HeWang应助Young采纳,获得200
10秒前
11秒前
勇敢的妞妞完成签到,获得积分10
12秒前
13秒前
ZJX1947发布了新的文献求助10
13秒前
肖小张发布了新的文献求助10
14秒前
善学以致用应助zzzyc采纳,获得30
14秒前
小马甲应助施妤儿采纳,获得10
14秒前
轻松的澜发布了新的文献求助10
15秒前
ddddddd完成签到 ,获得积分10
17秒前
子车茗应助yyup采纳,获得10
17秒前
cyhccc发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421