Multi-Sensor Fusion and Cooperative Perception for Autonomous Driving: A Review

传感器融合 感知 稳健性(进化) 计算机科学 融合 雷达 人工智能 激光雷达 过程(计算) 电信 地理 心理学 遥感 操作系统 基因 神经科学 哲学 语言学 化学 生物化学
作者
Chao Xiang,Feng Chen,Xiaopo Xie,Botian Shi,Hao Lu,Yisheng Lv,Mingchuan Yang,Zhendong Niu
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:15 (5): 36-58 被引量:18
标识
DOI:10.1109/mits.2023.3283864
摘要

Autonomous driving (AD), including single-vehicle intelligent AD and vehicle–infrastructure cooperative AD, has become a current research hot spot in academia and industry, and multi-sensor fusion is a fundamental task for AD system perception. However, the multi-sensor fusion process faces the problem of differences in the type and dimensionality of sensory data acquired using different sensors (cameras, lidar, millimeter-wave radar, and so on) as well as differences in the performance of environmental perception caused by using different fusion strategies. In this article, we study multiple papers on multi-sensor fusion in the field of AD and address the problem that the category division in current multi-sensor fusion perception is not detailed and clear enough and is more subjective, which makes the classification strategies differ significantly among similar algorithms. We innovatively propose a multi-sensor fusion taxonomy, which divides the fusion perception classification strategies into two categories—symmetric fusion and asymmetric fusion—and seven subcategories of strategy combinations, such as data, features, and results. In addition, the reliability of current AD perception is limited by its insufficient environment perception capability and the robustness of data-driven methods in dealing with extreme situations (e.g., blind areas). This article also summarizes the innovative applications of multi-sensor fusion classification strategies in AD cooperative perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王特工发布了新的文献求助10
1秒前
1秒前
呆萌的尔阳完成签到,获得积分10
1秒前
1秒前
Orange应助自由元菱采纳,获得10
1秒前
hh完成签到 ,获得积分10
1秒前
学术垃圾完成签到,获得积分10
3秒前
4秒前
狗子发布了新的文献求助10
5秒前
bella完成签到,获得积分10
5秒前
哈基米发布了新的文献求助10
6秒前
6秒前
6秒前
平淡驳完成签到 ,获得积分10
6秒前
JianYugen完成签到,获得积分10
6秒前
Gsyin发布了新的文献求助10
6秒前
8秒前
Kenny完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
炖地瓜完成签到,获得积分10
10秒前
10秒前
立军完成签到,获得积分10
10秒前
zx发布了新的文献求助10
10秒前
10秒前
ACOY应助雨忆天下采纳,获得10
12秒前
天天快乐应助海阔光明采纳,获得10
12秒前
llj发布了新的文献求助10
13秒前
jasmine发布了新的文献求助50
14秒前
小李在哪儿完成签到 ,获得积分10
14秒前
14秒前
15秒前
nine2652完成签到 ,获得积分10
15秒前
15秒前
Shrimp发布了新的文献求助15
15秒前
shaonianyou完成签到 ,获得积分10
15秒前
15秒前
FENGHUI完成签到,获得积分20
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304069
求助须知:如何正确求助?哪些是违规求助? 2938141
关于积分的说明 8486921
捐赠科研通 2612298
什么是DOI,文献DOI怎么找? 1426638
科研通“疑难数据库(出版商)”最低求助积分说明 662736
邀请新用户注册赠送积分活动 647301