计算机科学
特征提取
人工智能
变压器
模式识别(心理学)
计算机视觉
量子力学
物理
电压
作者
Chenghao Li,Xinyan Yang,Gang Liang
标识
DOI:10.1093/comjnl/bxad103
摘要
Abstract Violence detection is a critical task aimed at identifying violent behavior in video by extracting frames and applying classification models. However, the complexity of video data and the suddenness of violent events present significant hurdles in accurately pinpointing instances of violence, making the extraction of frames that indicate violence a challenging endeavor. Furthermore, designing and applying high-performance models for violence detection remains an open problem. Traditional models embed extracted spatial features from sampled frames directly into a temporal sequence, which ignores the spatio-temporal characteristics of video and limits the ability to express continuous changes between adjacent frames. To address the existing challenges, this paper proposes a novel framework called ACTION-VST. First, a keyframe extraction algorithm is developed to select frames that are most likely to represent violent scenes in videos. To transform visual sequences into spatio-temporal feature maps, a multi-path excitation module is proposed to activate spatio-temporal, channel and motion features. Next, an advanced Video Swin Transformer-based network is employed for both global and local spatio-temporal modeling, which enables comprehensive feature extraction and representation of violence. The proposed method was validated on two large-scale datasets, RLVS and RWF-2000, achieving accuracies of over 98 and 93%, respectively, surpassing the state of the art.
科研通智能强力驱动
Strongly Powered by AbleSci AI