SwiftR: Cross-platform ransomware fingerprinting using hierarchical neural networks on hybrid features

勒索软件 计算机科学 静态分析 人工神经网络 人工智能 编码(集合论) 机器学习 词(群论) 数据挖掘 理论计算机科学 集合(抽象数据类型) 恶意软件 计算机安全 程序设计语言 语言学 哲学
作者
ElMouatez Billah Karbab,Mourad Debbabi,Abdelouahid Derhab
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:225: 120017-120017 被引量:8
标识
DOI:10.1016/j.eswa.2023.120017
摘要

Ransomware has been largely exploited by cybercriminals to target individuals and organizations. In response to the increasing number and magnitude of ransomware attacks, it is important to consider the following problems when designing a ransomware fingerprinting solution: (i) how to make the solution portable to different hardware platforms and different dynamic analysis reports, (ii) how to design a solution that considers real-world use-cases, and (iii) how to evaluate the solution under realistic and challenging evaluation scenarios. To deal with these problems, we propose SwiftR, a novel portable framework for cross-platform ransomware detection and fingerprinting. SwiftR provides an accurate ransomware detection capability that relies on raw hybrid features along with advanced deep learning techniques. SwiftR is cross-platform as it is agnostic to architectures and operating systems by leveraging two novel types of features: (1) the assembly code Intermediate Representation (IR) features that are derived from static analysis, and (2) word-based features that are derived from the behavioral analysis reports, which are produced during dynamic analysis. SwiftR is supervised, and consists of two novel components: (a) Static SwiftR that proposes a novel architecture, called Hierarchical Neural Network (HNN), and (b) Dynamic SwiftR that applies LSTM on word embedding sequences when the Static SwiftR provides a low probability confidence. SwiftR aims to address the limitations of previous works by considering real-world use cases and challenging evaluation scenarios, i.e., time-resiliency, unknown family resiliency, and production evaluation scenarios. In addition, we extensively evaluate SwiftR on a dataset of 40.3K samples, which is the largest one compared to previous works. An F1-score of 98%, 96%, and 94% is achieved for ransomware detection, segregation between ransomware and other malware, and ransomware family attribution respectively. Furthermore, SwiftR maintains its high performance when deployed in a production environment where it processes 183K samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
刚刚
Ninico发布了新的文献求助10
1秒前
在水一方应助九黎采纳,获得10
1秒前
1秒前
OYZT发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
务实青筠完成签到 ,获得积分10
5秒前
5秒前
无心的惜芹完成签到,获得积分10
5秒前
lsl完成签到,获得积分10
5秒前
jiajia993完成签到,获得积分10
5秒前
6秒前
阿杜完成签到,获得积分10
7秒前
情怀应助ss采纳,获得10
7秒前
7秒前
8秒前
ccjx完成签到,获得积分10
8秒前
研友_Z7WPwZ发布了新的文献求助30
8秒前
heavyD发布了新的文献求助10
9秒前
戴先森发布了新的文献求助10
9秒前
谦让的樱发布了新的文献求助10
10秒前
小周发布了新的文献求助10
10秒前
田心发布了新的文献求助10
12秒前
12秒前
啊脏zz发布了新的文献求助10
13秒前
星星完成签到,获得积分10
14秒前
慕青应助lyz666采纳,获得10
14秒前
彭于晏应助BLCER采纳,获得30
14秒前
14秒前
14秒前
糊涂涂发布了新的文献求助10
14秒前
Doct完成签到,获得积分10
15秒前
16秒前
16秒前
瑾璟关注了科研通微信公众号
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124076
求助须知:如何正确求助?哪些是违规求助? 2774440
关于积分的说明 7722701
捐赠科研通 2430008
什么是DOI,文献DOI怎么找? 1290873
科研通“疑难数据库(出版商)”最低求助积分说明 621960
版权声明 600283