拟南芥
生物
芯(光纤)
细胞生物学
植物
生物化学
突变体
基因
材料科学
复合材料
作者
Yuwei Zhao,Linbin Deng,Robert L. Last,Wei Ma,Jun Liu
出处
期刊:Plant Journal
[Wiley]
日期:2024-05-26
卷期号:119 (3): 1226-1238
被引量:1
摘要
Enhancing the efficiency of photosynthesis represents a promising strategy to improve crop yields, with keeping the steady state of PSII being key to determining the photosynthetic performance. However, the mechanisms whereby the stability of PSII is maintained in oxygenic organisms remain to be explored. Here, we report that the Psb28 protein functions in regulating the homeostasis of PSII under different light conditions in Arabidopsis thaliana. The psb28 mutant is much smaller than the wild-type plants under normal growth light, which is due to its significantly reduced PSII activity. Similar defects were seen under low light and became more pronounced under photoinhibitory light. Notably, the amounts of PSII core complexes and core subunits are specifically decreased in psb28, whereas the abundance of other representative components of photosynthetic complexes remains largely unaltered. Although the PSII activity of psb28 was severely reduced when subjected to high light, its recovery from photoinactivation was not affected. By contrast, the degradation of PSII core protein subunits is dramatically accelerated in the presence of lincomycin. These results indicate that psb28 is defective in the photoprotection of PSII, which is consistent with the observation that the overall NPQ is much lower in psb28 compared to the wild type. Moreover, the Psb28 protein is associated with PSII core complexes and interacts mainly with the CP47 subunit of PSII core. Taken together, these findings reveal an important role for Psb28 in the protection and stabilization of PSII core in response to changes in light environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI