Linearly interpolating missing values in time series helps little for land cover classification using recurrent or attention networks

缺少数据 插值(计算机图形学) 线性插值 合成 土地覆盖 随机性 系列(地层学) 时间序列 计算机科学 遥感 数学 统计 人工智能 模式识别(心理学) 土地利用 地质学 古生物学 土木工程 工程类 运动(物理) 图像(数学)
作者
Xianghong Che,Hankui K. Zhang,Zhongbin B. Li,Yong Wang,Qing Sun,Dong Luo,Hao Wang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:212: 73-95 被引量:6
标识
DOI:10.1016/j.isprsjprs.2024.04.021
摘要

Satellite time series data, widely used for land cover classification, often contain missing values due to cloud contamination, which can negatively affect classification. Numerous strategies have been developed to reconstruct the missing values to produce regular time series for machine learning classifiers, among which the compositing followed by the linear interpolation is most widely used. However, the classification improvement of linear interpolation for land cover classification has not been examined. Recently developed deep learning models such as long short term memory (LSTM) and Transformer allow such examination as they can classify time series with missing values. In this study, we compared the time series composites with missing values (without linear interpolation) and the linearly interpolated time series composites (without missing values) for land cover classification. About 18 thousand Harmonized Landsat Sentinel-2 (HLS) images acquired over Amur River Basin of China (890,308 km2) in 2021 were composited to 14 16-day periods. Two time series composites were classified, i.e., (i) the 16-day composites without interpolation that have on average 15.35% 16-day periods with missing values and (ii) the linearly interpolated 16-day composites with no missing values. The classifications showed that (1) between classifications with and without linear interpolation there was < 0.2% overall accuracy differences for the bidirectional LSTM (Bi-LSTM) and < 0.5% for the Transformer both of which were smaller than model training randomness; and (2) the computation time can be saved using composites without linear interpolation. The findings suggested that it is unnecessary to use the time-consuming linear interpolation in Bi-LSTM and Transformer-based land cover classifications. The findings were confirmed by experiments for sensitivity to the number of cloud-free composites and to different classification legends using crop type classifications. It implied the linear interpolation algorithm cannot reconstruct reliable time series for land cover classifications and historical use of such method is more about mitigating the inability of traditional classifiers to handle missing values rather than improving classifications. Linear interpolation is not necessary for LSTM and Transformer with capability to handle missing values. The training datasets and developed codes in this study are made publicly available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gloyxtg发布了新的文献求助10
刚刚
田様应助wawa采纳,获得10
1秒前
1秒前
1秒前
DDDD应助伶俐如南采纳,获得30
2秒前
liuliqiong完成签到,获得积分10
2秒前
2秒前
哈哈哈哈完成签到 ,获得积分10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得30
4秒前
yyi1应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
从容盼山应助科研通管家采纳,获得10
4秒前
小郭子应助科研通管家采纳,获得20
4秒前
pluto应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
5秒前
326503177发布了新的文献求助10
5秒前
机智初夏发布了新的文献求助10
5秒前
顺心迎南完成签到,获得积分10
5秒前
Sonder完成签到,获得积分10
6秒前
hhui发布了新的文献求助30
6秒前
xingyue发布了新的文献求助10
7秒前
科研通AI5应助小陆采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199