清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting blood transfusion following traumatic injury using machine learning models: A systematic review and narrative synthesis

医学 系统回顾 梅德林 输血 数据提取 前瞻性队列研究 急诊医学 重症监护医学 机器学习 人工智能 外科 计算机科学 政治学 法学
作者
William Oakley,Sankalp Tandle,Zane Perkins,Max Marsden
出处
期刊:The journal of trauma and acute care surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:97 (4): 651-659 被引量:5
标识
DOI:10.1097/ta.0000000000004385
摘要

BACKGROUND Hemorrhage is a leading cause of preventable death in trauma. Accurately predicting a patient's blood transfusion requirement is essential but can be difficult. Machine learning (ML) is a field of artificial intelligence that is emerging within medicine for accurate prediction modeling. This systematic review aimed to identify and evaluate all ML models that predict blood transfusion in trauma. METHODS This systematic review was registered on the International Prospective register of Systematic Reviews (CRD4202237110). MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were systematically searched. Publications reporting an ML model that predicted blood transfusion in injured adult patients were included. Data extraction and risk of bias assessment were performed using validated frameworks. Data were synthesized narratively because of significant heterogeneity. RESULTS Twenty-five ML models for blood transfusion prediction in trauma were identified. Models incorporated diverse predictors and varied ML methodologies. Predictive performance was variable, but eight models achieved excellent discrimination (area under the receiver operating characteristic curve, >0.9) and nine models achieved good discrimination (area under the receiver operating characteristic curve, >0.8) in internal validation. Only two models reported measures of calibration. Four models have been externally validated in prospective cohorts: the Bleeding Risk Index, Compensatory Reserve Index, the Marsden model, and the Mina model. All studies were considered at high risk of bias often because of retrospective data sets, small sample size, and lack of external validation. DISCUSSION This review identified 25 ML models developed to predict blood transfusion requirement after injury. Seventeen ML models demonstrated good to excellent performance in silico, but only four models were externally validated. To date, ML models demonstrate the potential for early and individualized blood transfusion prediction, but further research is critically required to narrow the gap between ML model development and clinical application. LEVEL OF EVIDENCE Systematic Review Without Meta-analysis; Level IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一一完成签到 ,获得积分10
1秒前
忐忑的行天完成签到,获得积分10
3秒前
4秒前
7秒前
10秒前
合不着完成签到 ,获得积分10
13秒前
arizaki7发布了新的文献求助10
15秒前
27秒前
50秒前
55秒前
Ttimer完成签到,获得积分10
58秒前
三三完成签到,获得积分10
1分钟前
ZXneuro完成签到,获得积分10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
乖乖发布了新的文献求助10
3分钟前
xwwx完成签到 ,获得积分10
3分钟前
赘婿应助3719left采纳,获得10
3分钟前
打打应助乖乖采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3719left发布了新的文献求助10
3分钟前
3分钟前
Daixi_Chen完成签到,获得积分10
4分钟前
3719left完成签到,获得积分10
4分钟前
狂野的含烟完成签到 ,获得积分10
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
4分钟前
希望天下0贩的0应助xun采纳,获得10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
cwanglh完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802087
求助须知:如何正确求助?哪些是违规求助? 5823877
关于积分的说明 15505890
捐赠科研通 4927971
什么是DOI,文献DOI怎么找? 2652991
邀请新用户注册赠送积分活动 1600053
关于科研通互助平台的介绍 1554890