亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting blood transfusion following traumatic injury using machine learning models: A systematic review and narrative synthesis

医学 系统回顾 梅德林 输血 数据提取 前瞻性队列研究 急诊医学 重症监护医学 机器学习 人工智能 外科 计算机科学 政治学 法学
作者
William Oakley,Sankalp Tandle,Zane Perkins,Max Marsden
出处
期刊:The journal of trauma and acute care surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:97 (4): 651-659 被引量:5
标识
DOI:10.1097/ta.0000000000004385
摘要

BACKGROUND Hemorrhage is a leading cause of preventable death in trauma. Accurately predicting a patient's blood transfusion requirement is essential but can be difficult. Machine learning (ML) is a field of artificial intelligence that is emerging within medicine for accurate prediction modeling. This systematic review aimed to identify and evaluate all ML models that predict blood transfusion in trauma. METHODS This systematic review was registered on the International Prospective register of Systematic Reviews (CRD4202237110). MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were systematically searched. Publications reporting an ML model that predicted blood transfusion in injured adult patients were included. Data extraction and risk of bias assessment were performed using validated frameworks. Data were synthesized narratively because of significant heterogeneity. RESULTS Twenty-five ML models for blood transfusion prediction in trauma were identified. Models incorporated diverse predictors and varied ML methodologies. Predictive performance was variable, but eight models achieved excellent discrimination (area under the receiver operating characteristic curve, >0.9) and nine models achieved good discrimination (area under the receiver operating characteristic curve, >0.8) in internal validation. Only two models reported measures of calibration. Four models have been externally validated in prospective cohorts: the Bleeding Risk Index, Compensatory Reserve Index, the Marsden model, and the Mina model. All studies were considered at high risk of bias often because of retrospective data sets, small sample size, and lack of external validation. DISCUSSION This review identified 25 ML models developed to predict blood transfusion requirement after injury. Seventeen ML models demonstrated good to excellent performance in silico, but only four models were externally validated. To date, ML models demonstrate the potential for early and individualized blood transfusion prediction, but further research is critically required to narrow the gap between ML model development and clinical application. LEVEL OF EVIDENCE Systematic Review Without Meta-analysis; Level IV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
日光倾城完成签到 ,获得积分10
8秒前
Criminology34应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
Mario完成签到,获得积分10
13秒前
万能图书馆应助LucyMartinez采纳,获得10
16秒前
21秒前
27秒前
LucyMartinez发布了新的文献求助10
34秒前
38秒前
44秒前
Magic麦发布了新的文献求助10
49秒前
52秒前
庾稀给庾稀的求助进行了留言
53秒前
hb发布了新的文献求助10
55秒前
58秒前
59秒前
伊力扎提发布了新的文献求助10
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
shou关注了科研通微信公众号
1分钟前
sj发布了新的文献求助10
1分钟前
sj完成签到,获得积分10
1分钟前
1分钟前
shou发布了新的文献求助10
1分钟前
1分钟前
1分钟前
充电宝应助哭泣的擎汉采纳,获得10
1分钟前
刘xy发布了新的文献求助10
1分钟前
Magic麦完成签到,获得积分10
1分钟前
1分钟前
orixero应助Magic麦采纳,获得10
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746732
求助须知:如何正确求助?哪些是违规求助? 5438326
关于积分的说明 15355815
捐赠科研通 4886762
什么是DOI,文献DOI怎么找? 2627407
邀请新用户注册赠送积分活动 1575892
关于科研通互助平台的介绍 1532625