A Self-Representation Method with Local Similarity Preserving for Fast Multi-View Outlier Detection

离群值 计算机科学 异常检测 相似性(几何) 数据挖掘 代表(政治) 领域(数学) 人工智能 关系(数据库) 模式识别(心理学) 时间复杂性 算法 数学 图像(数学) 政治 政治学 纯数学 法学
作者
Yu Wang,Chuan Chen,Jinrong Lai,Lele Fu,Yuren Zhou,Zibin Zheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (1): 1-20 被引量:17
标识
DOI:10.1145/3532191
摘要

With the rapidly growing attention to multi-view data in recent years, multi-view outlier detection has become a rising field with intense research. These researches have made some success, but still exist some issues that need to be solved. First, many multi-view outlier detection methods can only handle datasets that conform to the cluster structure but are powerless for complex data distributions such as manifold structures. This overly restrictive data assumption limits the applicability of these methods. In addition, almost the majority of multi-view outlier detection algorithms cannot solve the online detection problem of multi-view outliers. To address these issues, we propose a new detection method based on the local similarity relation and data reconstruction, i.e., the Self-Representation Method with Local Similarity Preserving for fast multi-view outlier detection (SRLSP). By using the local similarity structure, the proposed method fully utilizes the characteristics of outliers and detects outliers with an applicable objective function. Besides, a well-designed optimization algorithm is proposed, which completes each iteration with linear time complexity and can calculate each instance parallelly. Also, the optimization algorithm can be easily extended to the online version, which is more suitable for practical production environments. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed method on both performance and time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慈祥的夜安应助通通真行采纳,获得10
刚刚
CL完成签到,获得积分10
2秒前
李y梅子发布了新的文献求助10
3秒前
4秒前
4秒前
三分糖完成签到,获得积分20
5秒前
林泉发布了新的文献求助30
6秒前
6秒前
7秒前
mengshang完成签到,获得积分10
9秒前
酷波er应助bb采纳,获得10
9秒前
PG完成签到,获得积分10
9秒前
李雪瑞发布了新的文献求助10
10秒前
传奇3应助KHZhang采纳,获得10
10秒前
上官若男应助KHZhang采纳,获得10
10秒前
Owen应助KHZhang采纳,获得10
10秒前
外向渊思完成签到 ,获得积分10
11秒前
hynni完成签到,获得积分10
11秒前
一条鱼叫弗里登完成签到 ,获得积分10
11秒前
三分糖发布了新的文献求助10
12秒前
wanci应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得30
13秒前
科目三应助科研通管家采纳,获得10
13秒前
14秒前
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
15秒前
等待的晓亦完成签到 ,获得积分10
15秒前
坚强的鸡翅完成签到,获得积分10
16秒前
浮游应助通通真行采纳,获得10
17秒前
17秒前
一水合羟基磷酸钙完成签到,获得积分10
17秒前
Akim应助geoman采纳,获得10
17秒前
17秒前
疯子不风完成签到,获得积分10
18秒前
共享精神应助从容以山采纳,获得10
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263