A Self-Representation Method with Local Similarity Preserving for Fast Multi-View Outlier Detection

离群值 计算机科学 异常检测 相似性(几何) 数据挖掘 代表(政治) 领域(数学) 人工智能 关系(数据库) 模式识别(心理学) 时间复杂性 算法 数学 图像(数学) 政治 政治学 纯数学 法学
作者
Yu Wang,Chuan Chen,Jinrong Lai,Lele Fu,Yuren Zhou,Zibin Zheng
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (1): 1-20 被引量:15
标识
DOI:10.1145/3532191
摘要

With the rapidly growing attention to multi-view data in recent years, multi-view outlier detection has become a rising field with intense research. These researches have made some success, but still exist some issues that need to be solved. First, many multi-view outlier detection methods can only handle datasets that conform to the cluster structure but are powerless for complex data distributions such as manifold structures. This overly restrictive data assumption limits the applicability of these methods. In addition, almost the majority of multi-view outlier detection algorithms cannot solve the online detection problem of multi-view outliers. To address these issues, we propose a new detection method based on the local similarity relation and data reconstruction, i.e., the Self-Representation Method with Local Similarity Preserving for fast multi-view outlier detection (SRLSP). By using the local similarity structure, the proposed method fully utilizes the characteristics of outliers and detects outliers with an applicable objective function. Besides, a well-designed optimization algorithm is proposed, which completes each iteration with linear time complexity and can calculate each instance parallelly. Also, the optimization algorithm can be easily extended to the online version, which is more suitable for practical production environments. Extensive experiments on both synthetic and real-world datasets demonstrate the superiority of the proposed method on both performance and time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜂蜜不是糖完成签到 ,获得积分10
1秒前
nixx发布了新的文献求助10
1秒前
1秒前
1秒前
JC完成签到,获得积分10
2秒前
2秒前
2秒前
冯宝宝完成签到,获得积分10
2秒前
脑洞疼应助闾丘博超采纳,获得10
2秒前
2秒前
2秒前
小羊转圈圈完成签到,获得积分10
2秒前
研友_LMBAXn发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
xun发布了新的文献求助10
5秒前
尛瞐慶成发布了新的文献求助10
6秒前
6秒前
Moon发布了新的文献求助10
7秒前
7秒前
乐意吸氧完成签到,获得积分10
7秒前
斯文败类应助愉快的映之采纳,获得10
7秒前
8秒前
centlay完成签到,获得积分0
8秒前
GGZ发布了新的文献求助10
8秒前
巫马垣发布了新的文献求助10
8秒前
酷波er应助付付采纳,获得10
8秒前
8秒前
歪比巴啵完成签到,获得积分10
8秒前
8秒前
sunny发布了新的文献求助10
9秒前
吕佳发布了新的文献求助10
9秒前
mm完成签到,获得积分10
9秒前
9秒前
9秒前
烟花应助万物更始采纳,获得10
10秒前
许自通发布了新的文献求助10
10秒前
苹果紫萱完成签到,获得积分10
10秒前
乐小泽完成签到,获得积分20
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Nanostructured Titanium Dioxide Materials 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866