Private Read Update Write (PRUW) in Federated Submodel Learning (FSL): Communication Efficient Schemes With and Without Sparsification

计算机科学 理论计算机科学
作者
Sajani Vithana,Şennur Ulukuş
出处
期刊:IEEE Transactions on Information Theory [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 1320-1348 被引量:12
标识
DOI:10.1109/tit.2023.3292187
摘要

We investigate the problem of private read-update-write (PRUW) in relation to private federated submodel learning (FSL), where a machine learning model is divided into multiple submodels based on the different types of data used to train the model. In PRUW, each user downloads the required submodel without revealing its index in the reading phase, and uploads the updates of the submodel without revealing the submodel index or the values of the updates in the writing phase. In this work, we first provide a basic communication efficient PRUW scheme, and study further means of reducing the communication cost via sparsification. Gradient sparsification is a widely used concept in learning applications, where only a selected set of parameters is downloaded and updated, which significantly reduces the communication cost. In this paper, we study how the concept of sparsification can be incorporated in private FSL with the goal of reducing the communication cost, while guaranteeing information-theoretic privacy of the updated submodel index as well as the values of the updates. To this end, we introduce two schemes: PRUW with top $r$ sparsification and PRUW with random sparsification. The former communicates only the most significant parameters/updates among the servers and the users, while the latter communicates a randomly selected set of parameters/updates. The two proposed schemes introduce novel techniques such as parameter/update (noisy) permutations to handle the additional sources of information leakage in PRUW caused by sparsification. Both schemes result in significantly reduced communication costs compared to that of the basic (non-sparse) PRUW scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助阿司匹林采纳,获得10
1秒前
哈哈完成签到,获得积分10
1秒前
楚寅完成签到 ,获得积分10
2秒前
hilda发布了新的文献求助30
3秒前
木木发布了新的文献求助10
4秒前
小七应助萌之痴痴采纳,获得30
8秒前
木子完成签到,获得积分10
9秒前
LIGHT发布了新的文献求助10
9秒前
11秒前
木子发布了新的文献求助10
11秒前
12秒前
从南到北完成签到,获得积分10
12秒前
lina发布了新的文献求助10
13秒前
Orange应助木木采纳,获得10
14秒前
15秒前
xiaoloong发布了新的文献求助30
15秒前
16秒前
16秒前
阿司匹林发布了新的文献求助10
17秒前
Vii应助robin采纳,获得10
18秒前
Alien完成签到,获得积分10
19秒前
orixero应助嘿嘿嘿采纳,获得10
19秒前
科目三应助Emma采纳,获得10
20秒前
完美世界应助达布妞采纳,获得10
21秒前
91完成签到 ,获得积分10
21秒前
昵称完成签到 ,获得积分10
21秒前
hilda完成签到,获得积分10
22秒前
Dhdhshsh发布了新的文献求助10
22秒前
wyhhh发布了新的文献求助10
25秒前
搜集达人应助阿司匹林采纳,获得10
25秒前
laity完成签到 ,获得积分10
26秒前
dandna完成签到 ,获得积分10
27秒前
南瓜汤完成签到,获得积分10
27秒前
28秒前
28秒前
章鱼哥想毕业完成签到 ,获得积分10
29秒前
Tjn完成签到,获得积分10
30秒前
30秒前
清新的寄风完成签到 ,获得积分10
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522922
求助须知:如何正确求助?哪些是违规求助? 3103872
关于积分的说明 9267825
捐赠科研通 2800626
什么是DOI,文献DOI怎么找? 1537038
邀请新用户注册赠送积分活动 715354
科研通“疑难数据库(出版商)”最低求助积分说明 708759