Deep learning-based high-accuracy detection for lumbar and cervical degenerative disease on T2-weighted MR images

医学 矢状面 腰椎 接收机工作特性 核医学 放射科 人工智能 计算机科学 内科学
作者
Wei Yi,Yu Zhao,Wen Tang,Hongkun Yin,Lifeng Yu,Yaohui Wang,Wei Tian
出处
期刊:European Spine Journal [Springer Nature]
卷期号:32 (11): 3807-3814 被引量:6
标识
DOI:10.1007/s00586-023-07641-4
摘要

Abstract Purpose To develop and validate a deep learning (DL) model for detecting lumbar degenerative disease in both sagittal and axial views of T2-weighted MRI and evaluate its generalized performance in detecting cervical degenerative disease. Methods T2-weighted MRI scans of 804 patients with symptoms of lumbar degenerative disease were retrospectively collected from three hospitals. The training dataset ( n = 456) and internal validation dataset ( n = 134) were randomly selected from the center I. Two external validation datasets comprising 100 and 114 patients were from center II and center III, respectively. A DL model based on 3D ResNet18 and transformer architecture was proposed to detect lumbar degenerative disease. In addition, a cervical MR image dataset comprising 200 patients from an independent hospital was used to evaluate the generalized performance of the DL model. The diagnostic performance was assessed by the free-response receiver operating characteristic (fROC) curve and precision–recall (PR) curve. Precision, recall, and F1-score were used to measure the DL model. Results A total of 2497 three-dimension retrogression annotations were labeled for training ( n = 1157) and multicenter validation ( n = 1340). The DL model showed excellent detection efficiency in the internal validation dataset, with F1-score achieving 0.971 and 0.903 on the sagittal and axial MR images, respectively. Good performance was also observed in the external validation dataset I (F1-score, 0.768 on sagittal MR images and 0.837 on axial MR images) and external validation dataset II (F1-score, 0.787 on sagittal MR images and 0.770 on axial MR images). Furthermore, the robustness of the DL model was demonstrated via transfer learning and generalized performance evaluation on the external cervical dataset, with the F1-score yielding 0.931 and 0.919 on the sagittal and axial MR images, respectively. Conclusion The proposed DL model can automatically detect lumbar and cervical degenerative disease on T2-weighted MR images with good performance, robustness, and feasibility in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
luluyang发布了新的文献求助20
1秒前
Hello应助shi采纳,获得10
1秒前
1秒前
Orange应助长江采纳,获得10
1秒前
青叶白完成签到,获得积分20
3秒前
机灵剑通关注了科研通微信公众号
3秒前
JJ发布了新的文献求助10
3秒前
虚拟小号完成签到,获得积分10
3秒前
3秒前
香蕉觅云应助开朗尔冬采纳,获得10
4秒前
HalfGumps发布了新的文献求助10
4秒前
美满忆文应助富贵采纳,获得10
5秒前
劉平果发布了新的文献求助10
6秒前
qj完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助青叶白采纳,获得20
7秒前
fifteen发布了新的文献求助10
8秒前
Ohhruby发布了新的文献求助10
8秒前
思源应助慕航采纳,获得10
8秒前
8秒前
10秒前
meimei完成签到,获得积分20
11秒前
小二郎应助富贵采纳,获得10
11秒前
11秒前
12秒前
上官若男应助qj采纳,获得10
12秒前
科研小风发布了新的文献求助10
13秒前
小盆呐完成签到,获得积分10
15秒前
zhuzhuxia发布了新的文献求助10
15秒前
CodeCraft应助生化材没有环采纳,获得10
16秒前
lyp发布了新的文献求助10
16秒前
renhu发布了新的文献求助10
17秒前
长江发布了新的文献求助10
17秒前
不配.应助小卢同学采纳,获得10
17秒前
烟花应助HalfGumps采纳,获得10
18秒前
慕航完成签到,获得积分10
19秒前
19秒前
MargeryMay完成签到,获得积分10
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154241
求助须知:如何正确求助?哪些是违规求助? 2805095
关于积分的说明 7863477
捐赠科研通 2463276
什么是DOI,文献DOI怎么找? 1311205
科研通“疑难数据库(出版商)”最低求助积分说明 629486
版权声明 601821