四方晶系
中子衍射
尖晶石
化学
八面体
离子
结晶学
公式单位
相(物质)
分析化学(期刊)
晶体结构
材料科学
色谱法
有机化学
冶金
作者
Nicola Michael Jobst,Neelima Paul,Přemysl Beran,Marilena Mancini,Ralph Gilles,Margret Wohlfahrt‐Mehrens,Peter Axmann
摘要
High voltage spinel is one of the most promising next-generation cobalt-free cathode materials for lithium ion battery applications. Besides the typically utilized compositional range of LixNi0.5Mn1.5O4 0 < x < 1 in the voltage window of 4.90-3.00 V, additional 1.5 mol of Li per formula unit can be introduced into the structure, in an extended voltage range to 1.50 V. Theoretically, this leads to significant increase of the specific energy from 690 to 1190 Wh/kg. However, utilization of the extended potential window leads to rapid capacity fading and voltage polarization that lack a comprehensive explanation. In this work, we conducted potentiostatic entropymetry, operando XRD and neutron diffraction on the ordered stoichiometric spinel LixNi0.5Mn1.5O4 within 0 < x < 2.5 in order to understand the dynamic structure evolution and correlate it with the voltage profile. During the two-phase reaction from cubic (x < 1) to tetragonal (x > 1) phase at ∼2.8 V, we identified the evolution of a second tetragonal phase with x > 2. The structural evaluation during the delithiation indicates the formation of an intermediate phase with cubic symmetry at a lithium content of x = 1.5. Evaluation of neutron diffraction data, with maximum entropy method, of the highly lithiated phase LixNi0.5Mn1.5O4 with 2 < x < 2.5 strongly suggests that lithium ions are located on octahedral 8a and tetrahedral 4a positions of the distorted tetragonal phase I41amd. Consequently, we were able to provide a conclusive explanation for the additional voltage step at 2.10 V, the sloping voltage profile below 1.80 V, and the additional voltage step at ∼3.80 V.
科研通智能强力驱动
Strongly Powered by AbleSci AI