化学
拉曼光谱
肥料
污染
光谱学
人工智能
农业工程
分析化学(期刊)
生化工程
工艺工程
环境化学
计算机科学
有机化学
光学
工程类
量子力学
生物
生态学
物理
作者
Jianian Li,Yongzheng Ma,Jian Zhang,Dandan Kong
标识
DOI:10.1016/j.saa.2024.124985
摘要
The rapid detection of fertilizer nutrient information is a crucial element in enabling intelligent and precise variable fertilizer application. However, traditional detection methods possess limitations, such as the difficulty in quantifying multiple components and cross-contamination. In this study, a rapid detection method was proposed, leveraging Raman spectroscopy combined with machine learning, to identify five types of fertilizers: K
科研通智能强力驱动
Strongly Powered by AbleSci AI