纳米复合材料
污染物
四环素
双氯芬酸
光催化
磁铁矿
矿物
兴奋剂
化学
环境化学
材料科学
冶金
纳米技术
生物化学
催化作用
有机化学
抗生素
光电子学
作者
Roya Mohammadzadeh Kakhki,Hadis Bolandhemmat
标识
DOI:10.1038/s41598-024-69644-5
摘要
The contamination of water sources by pharmaceutical pollutants presents significant environmental and health hazards, making the development of effective photocatalytic materials crucial for their removal. This research focuses on the synthesis of a novel Ag/CuS/Fe₃O₄ nanocomposite and its photocatalytic efficiency against tetracycline (TC) and diclofenac contaminants. The nanocomposite was created through a straightforward and scalable precipitation method, integrating silver nanoparticles (AgNPs) and copper sulfide (CuS) into a magnetite framework. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),ultraviolet–visible spectrophotometry (UV–Vis) and energy-dispersive X-ray spectroscopy (EDS), were employed to characterize the structural and morphological properties of the synthesized material. The photocatalytic activity was tested by degrading tetracycline and diclofenac under visible light. Results indicated a marked improvement in the photocatalytic performance of the Ag/CuS/Fe₃O₄ nanocomposite (98%photodegradation of TC 60 ppm in 30 min) compared to both pure magnetite and CuS/Fe₃O₄. The enhanced photocatalytic efficiency is attributed to the synergistic interaction between AgNPs, CuS, and Fe3O4, which improves light absorption and charge separation, thereby increasing the generation of reactive oxygen species (ROS) and promoting the degradation of the pollutants. The rate constant k of photodegradation was about 0.1 min−1 for catalyst dosages 0.02 g. Also the effect of photocatalyst dose and concentration of TC and pH of solution was tested. The modified photocatalyst was also used for simultaneous photodegradation of TC and diclofenac successfully. This study highlights the potential of the Ag/CuS/Fe₃O₄ nanocomposite as an efficient and reusable photocatalyst for eliminating pharmaceutical pollutants from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI