过电位
析氧
无机化学
氧化物
化学
氢氧化钴
氢氧化物
催化作用
钴
物理化学
电化学
电极
有机化学
作者
MinJoong Kim,DongHoon Song,Jeonghoon Lim,Junu Bak,JeongHan Roh,SeKwon Oh,EunAe Cho
摘要
The chemical coupling of molybdenum carbide (Mo 2 C) to cobalt (Co) promotes oxygen evolution reaction (OER) kinetics on the Co surface by making the surface more electrophilic. Here, to gain a deeper understanding of the effects of the surface electrophilic properties on the OER kinetics of Co and to obtain high OER activity, Fe and Ni are additionally incorporated into Co nanoparticles that are coupled with Mo 2 C nanoparticles (Co‐Mo 2 C). Considering the oxidation states of Fe (Fe 3+ ), Co (Co 2+ /Co 3+ ), and Ni (Ni 2+ ) ions, Fe and Ni are expected to affect the electronic structure of Co in the opposite direction. Lewis acidic Fe 3+ doping makes the Co surface oxide more electrophilic, promoting the formation of OER‐active CoOOH by strongly attracting hydroxide ions (OH − ). Thus, the OER kinetics is facilitated on the Co surface of Fe‐doped Co‐Mo 2 C, resulting in a significantly lower overpotential for the OER. On the other hand, the Ni 2+ doping makes the Co surface oxide less electrophilic, leading to an increase in the overpotential for the OER. Tailoring the electrophilic properties of the Co surface is presented as a key parameter in the design of a Co‐based OER catalyst for alkaline water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI