Exploring protein-protein interactions for the development of new analgesics

医学 化学 计算生物学 生物
作者
A. Nascimento,Rui Vale Marques,Allan Pradelli Roldão,Ana Maria G. Dias Rodrigues,Rodrigo Mendes Eslava,Camila Squarzoni Dale,Eduardo M. Reis,Deborah Schechtman
出处
期刊:Science Signaling [American Association for the Advancement of Science (AAAS)]
卷期号:17 (857)
标识
DOI:10.1126/scisignal.adn4694
摘要

The development of new analgesics has been challenging. Candidate drugs often have limited clinical utility due to side effects that arise because many drug targets are involved in signaling pathways other than pain transduction. Here, we explored the potential of targeting protein-protein interactions (PPIs) that mediate pain signaling as an approach to developing drugs to treat chronic pain. We reviewed the approaches used to identify small molecules and peptide modulators of PPIs and their ability to decrease pain-like behaviors in rodent animal models. We analyzed data from rodent and human sensory nerve tissues to build associated signaling networks and assessed both validated and potential interactions and the structures of the interacting domains that could inform the design of synthetic peptides and small molecules. This resource identifies PPIs that could be explored for the development of new analgesics, particularly between scaffolding proteins and receptors for various growth factors and neurotransmitters, as well as ion channels and other enzymes. Targeting the adaptor function of CBL by blocking interactions between its proline-rich carboxyl-terminal domain and its SH3-domain–containing protein partners, such as GRB2, could disrupt endosomal signaling induced by pain-associated growth factors. This approach would leave intact its E3-ligase functions, which are mediated by other domains and are critical for other cellular functions. This potential of PPI modulators to be more selective may mitigate side effects and improve the clinical management of pain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Singularity应助寒江雪采纳,获得10
1秒前
1秒前
Sew东坡完成签到,获得积分10
2秒前
3秒前
zzz发布了新的文献求助10
3秒前
能干戎完成签到,获得积分10
4秒前
caicaikan完成签到,获得积分10
5秒前
粗犷的沛容应助周芷卉采纳,获得10
6秒前
6秒前
7秒前
7秒前
vinh完成签到,获得积分10
8秒前
redondo5完成签到,获得积分10
8秒前
wanli445发布了新的文献求助10
10秒前
北北北完成签到,获得积分10
12秒前
12秒前
天空之城发布了新的文献求助80
13秒前
song完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
15秒前
wanli445完成签到,获得积分10
15秒前
jjj完成签到,获得积分10
16秒前
redondo完成签到,获得积分10
17秒前
共享精神应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得30
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
20秒前
21秒前
无所不能的虫虫完成签到,获得积分10
22秒前
23秒前
23秒前
芋圆不圆完成签到,获得积分10
26秒前
完美的天空应助周芷卉采纳,获得10
33秒前
小马甲应助江月采纳,获得10
34秒前
SciGPT应助菠萝吹雪采纳,获得10
35秒前
lulalula完成签到,获得积分10
36秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112230
求助须知:如何正确求助?哪些是违规求助? 2762411
关于积分的说明 7670575
捐赠科研通 2417546
什么是DOI,文献DOI怎么找? 1283208
科研通“疑难数据库(出版商)”最低求助积分说明 619371
版权声明 599583