Identification of PANoptosis Subtypes to Assess the Prognosis and Immune Microenvironment of Lung Adenocarcinoma Patients: A Bioinformatics Combined Machine Learning Study

免疫系统 比例危险模型 弗雷明翰风险评分 免疫疗法 肿瘤科 腺癌 医学 生物信息学 内科学 计算生物学 生物 癌症 免疫学 疾病
作者
Qian Zhang,Bo-Lin Wang,Di Wu,Lu Gao,Zhihua Wan,Ruifeng Wu
出处
期刊:Current Cancer Drug Targets [Bentham Science Publishers]
卷期号:25
标识
DOI:10.2174/0115680096322045240902103219
摘要

Background: PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated. Methods: In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different sub-types by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Further-more, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified via the area under the curve and validated on an external dataset. Results: LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outper-formed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the exter-nal validation set were 0.55, 0.59, and 0.60, respectively. Conclusion: We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor mi-croenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asurary完成签到 ,获得积分10
刚刚
shuangcheng发布了新的文献求助10
1秒前
有点is完成签到,获得积分10
3秒前
3秒前
科研白完成签到,获得积分20
4秒前
Jzhu96发布了新的文献求助10
4秒前
嘻嘻完成签到,获得积分10
4秒前
4秒前
燕子发布了新的文献求助30
4秒前
科目三应助陈隆采纳,获得10
4秒前
852应助qzp98采纳,获得10
5秒前
星黛Lu发布了新的文献求助10
5秒前
欠虐宝宝完成签到 ,获得积分10
5秒前
5秒前
Cc发布了新的文献求助10
5秒前
文静的谷菱完成签到,获得积分10
6秒前
无花果应助emm采纳,获得10
6秒前
6秒前
Tina完成签到 ,获得积分10
6秒前
羞涩的文轩完成签到,获得积分10
6秒前
7秒前
丞123完成签到,获得积分10
7秒前
清风完成签到,获得积分10
7秒前
烟花应助鱼生采纳,获得10
7秒前
8秒前
phoenix完成签到,获得积分20
8秒前
8秒前
8秒前
郭guoguo完成签到,获得积分10
9秒前
10秒前
汪汪发布了新的文献求助10
10秒前
10秒前
10秒前
小电风扇完成签到,获得积分10
10秒前
oak完成签到,获得积分10
11秒前
wanci应助GLN采纳,获得10
11秒前
11秒前
马婷婷发布了新的文献求助10
11秒前
孩子气发布了新的文献求助10
12秒前
xielixin2001完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969060
求助须知:如何正确求助?哪些是违规求助? 3513962
关于积分的说明 11171223
捐赠科研通 3249302
什么是DOI,文献DOI怎么找? 1794772
邀请新用户注册赠送积分活动 875377
科研通“疑难数据库(出版商)”最低求助积分说明 804769