Identification of PANoptosis Subtypes to Assess the Prognosis and Immune Microenvironment of Lung Adenocarcinoma Patients: A Bioinformatics Combined Machine Learning Study

免疫系统 比例危险模型 弗雷明翰风险评分 免疫疗法 肿瘤科 腺癌 医学 生物信息学 内科学 计算生物学 生物 癌症 免疫学 疾病
作者
Qian Zhang,Bo-Lin Wang,Di Wu,Lu Gao,Zhihua Wan,Ruifeng Wu
出处
期刊:Current Cancer Drug Targets [Bentham Science]
卷期号:25
标识
DOI:10.2174/0115680096322045240902103219
摘要

Background: PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated. Methods: In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different sub-types by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Further-more, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified via the area under the curve and validated on an external dataset. Results: LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outper-formed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the exter-nal validation set were 0.55, 0.59, and 0.60, respectively. Conclusion: We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor mi-croenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助zhouzhaoyi采纳,获得10
刚刚
2秒前
杨金城发布了新的文献求助10
2秒前
3秒前
勤奋的凌翠完成签到 ,获得积分10
3秒前
3秒前
sanmu完成签到,获得积分20
3秒前
冷静荠关注了科研通微信公众号
3秒前
5秒前
5秒前
6秒前
6秒前
毛毛虫完成签到,获得积分10
7秒前
7秒前
Lobectomy发布了新的文献求助10
8秒前
Richard发布了新的文献求助10
8秒前
LabRat完成签到 ,获得积分10
8秒前
Spectrum_07完成签到,获得积分10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
从容芮应助科研通管家采纳,获得10
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
从容芮应助科研通管家采纳,获得50
10秒前
所所应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Lobectomy发布了新的文献求助10
10秒前
10秒前
勤奋的灵松完成签到,获得积分20
11秒前
SUPERH0T完成签到,获得积分10
12秒前
二条发布了新的文献求助10
12秒前
hf完成签到,获得积分10
13秒前
13秒前
14秒前
Hello应助adoretheall采纳,获得10
14秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943