Identification of PANoptosis Subtypes to Assess the Prognosis and Immune Microenvironment of Lung Adenocarcinoma Patients: A Bioinformatics Combined Machine Learning Study

免疫系统 比例危险模型 弗雷明翰风险评分 免疫疗法 肿瘤科 腺癌 医学 生物信息学 内科学 计算生物学 生物 癌症 免疫学 疾病
作者
Qian Zhang,Bo-Lin Wang,Di Wu,Lu Gao,Zhihua Wan,Ruifeng Wu
出处
期刊:Current Cancer Drug Targets [Bentham Science]
卷期号:25
标识
DOI:10.2174/0115680096322045240902103219
摘要

Background: PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated. Methods: In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different sub-types by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Further-more, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified via the area under the curve and validated on an external dataset. Results: LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outper-formed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the exter-nal validation set were 0.55, 0.59, and 0.60, respectively. Conclusion: We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor mi-croenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亭语完成签到 ,获得积分0
刚刚
重要清涟完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
BaiX发布了新的文献求助10
1秒前
1秒前
路旁小白完成签到,获得积分10
1秒前
枫桥完成签到 ,获得积分10
1秒前
彭于晏应助zhonghbush采纳,获得10
2秒前
秦玉蓉完成签到,获得积分10
2秒前
小文cremen完成签到 ,获得积分10
3秒前
Owen应助千里采纳,获得10
4秒前
o10发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
紧张的梦岚应助开放雁丝采纳,获得20
4秒前
淇淇怪怪发布了新的文献求助10
5秒前
深情安青应助呼叫554采纳,获得30
5秒前
zhuiyu完成签到,获得积分10
5秒前
鲜艳的手链完成签到,获得积分10
5秒前
知性的以筠完成签到,获得积分10
6秒前
leiyang49完成签到,获得积分10
6秒前
6秒前
李小伟完成签到,获得积分10
7秒前
7秒前
铁匠发布了新的文献求助10
8秒前
Jupiter完成签到,获得积分10
8秒前
zsqqqqq完成签到,获得积分10
10秒前
MADKAI发布了新的文献求助10
10秒前
二二二发布了新的文献求助10
10秒前
完美世界应助nihil采纳,获得10
11秒前
11秒前
cd发布了新的文献求助10
11秒前
过时的丹秋完成签到 ,获得积分10
12秒前
12秒前
成就缘分完成签到,获得积分10
12秒前
勤恳的问儿给勤恳的问儿的求助进行了留言
12秒前
一米阳光完成签到,获得积分10
13秒前
深情安青应助April采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672