Identification of PANoptosis Subtypes to Assess the Prognosis and Immune Microenvironment of Lung Adenocarcinoma Patients: A Bioinformatics Combined Machine Learning Study

免疫系统 比例危险模型 弗雷明翰风险评分 免疫疗法 肿瘤科 腺癌 医学 生物信息学 内科学 计算生物学 生物 癌症 免疫学 疾病
作者
Qian Zhang,Bo-Lin Wang,Di Wu,Lu Gao,Zhihua Wan,Ruifeng Wu
出处
期刊:Current Cancer Drug Targets [Bentham Science Publishers]
卷期号:25
标识
DOI:10.2174/0115680096322045240902103219
摘要

Background: PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated. Methods: In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different sub-types by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Further-more, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified via the area under the curve and validated on an external dataset. Results: LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outper-formed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the exter-nal validation set were 0.55, 0.59, and 0.60, respectively. Conclusion: We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor mi-croenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴富完成签到,获得积分10
1秒前
kitty完成签到 ,获得积分10
1秒前
4秒前
酷波er应助心好塞采纳,获得10
5秒前
Passskd完成签到,获得积分10
6秒前
fang应助科研通管家采纳,获得10
7秒前
山野村夫应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
予修应助科研通管家采纳,获得10
7秒前
liliflower应助科研通管家采纳,获得10
7秒前
伶俐乐菱应助科研通管家采纳,获得10
7秒前
伶俐乐菱应助科研通管家采纳,获得10
7秒前
FAN应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
FAN应助科研通管家采纳,获得10
7秒前
7秒前
李治海发布了新的文献求助10
8秒前
zhuzhu完成签到,获得积分10
9秒前
星辰大海应助jiaolulu采纳,获得10
9秒前
10秒前
颖宝老公完成签到,获得积分0
10秒前
清爽夜雪完成签到,获得积分0
11秒前
量子星尘发布了新的文献求助10
11秒前
大翟完成签到,获得积分10
13秒前
不远完成签到,获得积分10
14秒前
冯珂完成签到 ,获得积分10
16秒前
Graham完成签到,获得积分10
16秒前
稳重乌冬面完成签到 ,获得积分10
18秒前
一苇以航完成签到 ,获得积分10
19秒前
戚雅柔完成签到 ,获得积分10
19秒前
vsvsgo完成签到,获得积分10
20秒前
米奇完成签到 ,获得积分10
20秒前
加一点荒谬完成签到,获得积分10
20秒前
20秒前
一一一给轻松白桃的求助进行了留言
22秒前
zz2905完成签到,获得积分10
22秒前
小超人完成签到 ,获得积分10
23秒前
香蕉初瑶完成签到,获得积分10
23秒前
meimei完成签到 ,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022