亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of PANoptosis Subtypes to Assess the Prognosis and Immune Microenvironment of Lung Adenocarcinoma Patients: A Bioinformatics Combined Machine Learning Study

免疫系统 比例危险模型 弗雷明翰风险评分 免疫疗法 肿瘤科 腺癌 医学 生物信息学 内科学 计算生物学 生物 癌症 免疫学 疾病
作者
Xiaofeng Zhou,Bo-Lin Wang,Di Wu,Lu Gao,Zhihua Wan,Ruifeng Wu
出处
期刊:Current Cancer Drug Targets [Bentham Science]
卷期号:25 被引量:1
标识
DOI:10.2174/0115680096322045240902103219
摘要

Background: PANoptosis, a novelty mechanism of cell death involving crosstalk between apoptosis, pyroptosis, and necroptosis, is strongly associated with tumor cell death and immunotherapy efficacy. However, its relevance in lung adenocarcinoma (LUAD) remains to be elucidated. Methods: In this study, we acquired 18 PANoptosis-related differentially expressed gene (PRDEG) of LUAD. Based on these genes, LUAD samples were identified with different sub-types by unsupervised clustering. Next, we compared the differences between the subtypes, including clinical features, immune microenvironment, and potentially sensitive drugs. Further-more, we used machine learning to identify hub prognostic PRDEGs, construct a risk score, and validate it on other external datasets. We incorporated the patient's clinical information and risk score into the proportional hazards model and lasso-cox models to find key prognostic features and constructed five prognostic models. The best model was identified via the area under the curve and validated on an external dataset. Results: LUAD patients were divided into two clusters named C1 and C2, respectively. The C2 cluster exhibited shorter survival time, more advanced tumor stage, higher suppressive immune cell scores, such as dendritic cells, and higher expression of inhibitory immune checkpoints, such as LAG3 and CD86. TIMP1, CAV1, and CD69 were recognized as key prognostic factors, and risk scores predicted survival with significant differences in the external validation set. Risk score and N-stage were identified as critical prognostic features. The Coxph model outper-formed other machine learning clinical models. The 1-, 3-, and 5-year time-ROCs in the exter-nal validation set were 0.55, 0.59, and 0.60, respectively. Conclusion: We demonstrated the potential of PANoptosis-based molecular clustering and prognostic features in predicting the survival of patients with LUAD as well as the tumor mi-croenvironment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
刚刚
nelime77完成签到,获得积分20
刚刚
科研通AI6应助畅快的涵蕾采纳,获得10
4秒前
连安阳完成签到,获得积分10
10秒前
13秒前
lpy完成签到,获得积分10
15秒前
JamesPei应助on采纳,获得10
15秒前
顾矜应助徐0202采纳,获得10
15秒前
懒癌晚期发布了新的文献求助10
18秒前
andrele发布了新的文献求助10
25秒前
28秒前
36秒前
Jason完成签到 ,获得积分20
38秒前
40秒前
41秒前
lpy发布了新的文献求助10
41秒前
41秒前
42秒前
NexusExplorer应助水水水采纳,获得10
43秒前
欢喜的迎丝完成签到 ,获得积分10
44秒前
Wuyx发布了新的文献求助10
48秒前
50秒前
大模型应助www采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Downey应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
53秒前
54秒前
大方大船发布了新的文献求助10
57秒前
on发布了新的文献求助10
58秒前
水水水发布了新的文献求助10
59秒前
丘比特应助Wuyx采纳,获得10
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
大方大船完成签到,获得积分10
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cjy200126完成签到,获得积分10
1分钟前
zzZ_发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590329
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795072
捐赠科研通 4631262
什么是DOI,文献DOI怎么找? 2532677
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617