Enhancing insight into ferroptosis mechanisms in sepsis: A genomic and pharmacological approach integrating single-cell sequencing and Mendelian randomization

孟德尔随机化 多效性 表达数量性状基因座 计算生物学 生物 基因组学 败血症 遗传学 精密医学 生物信息学 表型 遗传变异 基因 单核苷酸多态性 基因组 免疫学 基因型
作者
Yuanqi Zhao,Zijian Zhou,Xiuyu Cui,Yiwei Yu,Ping Yan,Weidong Zhao
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:140: 112910-112910
标识
DOI:10.1016/j.intimp.2024.112910
摘要

This research investigated the intricate relationship between ferroptosis and sepsis by utilizing advanced genomic and pharmacological methodologies. Specifically, we obtained expression quantitative trait loci (eQTLs) for 435 genes associated with ferroptosis from the eQTLGen Consortium and detected notable cis-eQTLs for 281 of these genes. Next, we conducted a detailed analysis to assess the impact of these eQTLs on susceptibility to sepsis using Mendelian randomization (MR) with data from a cohort of 10,154 sepsis patients and 452,764 controls sourced from the UK Biobank. MR analysis revealed 16 ferroptosis-related genes that exhibited significant associations with sepsis outcomes. To bolster the robustness of these findings, sensitivity analyses were performed to assess pleiotropy and heterogeneity, thus confirming the reliability of the causal inferences. Furthermore, single-cell RNA sequencing data from sepsis patients offered a detailed examination of gene expression profiles, demonstrating varying levels of ferroptosis marker expression across different cell types. Pathway enrichment analysis utilizing gene set enrichment analysis (GSEA) further revealed the key biological pathways involved in the progression of sepsis. Additionally, the use of computational molecular docking facilitated the prediction of interactions between identified genes and potential therapeutic compounds, highlighting novel drug targets. In conclusion, our integrated approach combining genomics and pharmacology offers valuable insights into the involvement of ferroptosis in sepsis, laying the groundwork for potential therapeutic strategies targeting this cell death pathway to enhance sepsis management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰发布了新的文献求助10
刚刚
SciGPT应助o原来是草莓吖采纳,获得10
2秒前
2秒前
爆米花应助Sususoule采纳,获得10
3秒前
4秒前
Enoch发布了新的文献求助10
5秒前
研友_VZG7GZ应助甜蜜水蜜桃采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
10秒前
10秒前
圈圈发布了新的文献求助10
10秒前
科研通AI2S应助Lucia采纳,获得10
11秒前
bkagyin应助Lucia采纳,获得10
11秒前
懦弱的难敌完成签到,获得积分10
12秒前
12秒前
酷波er应助jdj采纳,获得30
12秒前
14秒前
15秒前
16秒前
fabian发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
lcs发布了新的文献求助10
17秒前
18秒前
18秒前
陈龙完成签到,获得积分10
20秒前
幸福大白发布了新的文献求助30
21秒前
优美匕发布了新的文献求助10
22秒前
任性的白玉完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
Ava应助圈圈采纳,获得10
25秒前
爱学习的瑞瑞子完成签到 ,获得积分10
27秒前
27秒前
可爱的函函应助优美匕采纳,获得10
29秒前
鲤角兽完成签到,获得积分10
29秒前
29秒前
我是老大应助健康的寄风采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
Orange应助lcs采纳,获得10
31秒前
32秒前
陈st完成签到 ,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012