运动学
卡尔曼滤波器
计算机科学
车辆动力学
传感器融合
控制理论(社会学)
跟踪(教育)
观察员(物理)
模拟
工程类
人工智能
控制(管理)
汽车工程
心理学
教育学
物理
经典力学
量子力学
作者
Guoying Chen,Jun Yao,Zhenhai Gao,Zheng Gao,Xinyu Wang,Nan Xu,Min Hua
出处
期刊:SAE International journal of vehicle dynamics, stability, and NVH
日期:2024-01-04
卷期号:8 (1)
被引量:5
标识
DOI:10.4271/10-08-01-0003
摘要
<div>To address the challenge of directly measuring essential dynamic parameters of vehicles, this article introduces a multi-source information fusion estimation method. Using the intelligent front camera (IFC) sensor to analyze lane line polynomial information and a kinematic model, the vehicle’s lateral velocity and sideslip angle can be determined without extra sensor expenses. After evaluating the strengths and weaknesses of the two aforementioned lateral velocity estimation techniques, a fusion estimation approach for lateral velocity is proposed. This approach extracts the vehicle’s lateral dynamic characteristics to calculate the fusion allocation coefficient. Subsequently, the outcomes from the two lateral velocity estimation techniques are merged, ensuring rapid convergence under steady-state conditions and precise tracking in dynamic scenarios. In addition, we introduce a tire parameter online adaptive module (TPOAM) to continually update essential tire parameters such as cornering stiffnesses, with its effectiveness demonstrated through DLC and slalom simulation tests. Using a dual extended Kalman filter (DEKF) observer, the article allows for joint estimation of vehicle states and tire parameters. Ultimately, we offer a cost-effective estimation method of vital dynamic vehicle parameters to support the motion control module in autonomous driving.</div>
科研通智能强力驱动
Strongly Powered by AbleSci AI