Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Shouwu Guo,Chao Wang,Jing Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (2) 被引量:1
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wintersss完成签到,获得积分10
刚刚
怕黑的凝旋完成签到 ,获得积分10
1秒前
了尘完成签到,获得积分10
2秒前
roking完成签到,获得积分10
2秒前
隔水一路秋完成签到,获得积分10
3秒前
qian完成签到,获得积分10
3秒前
louis发布了新的文献求助10
4秒前
yongziwu完成签到,获得积分10
6秒前
小雯发布了新的文献求助10
6秒前
晓风残月完成签到,获得积分10
8秒前
8秒前
于是真的完成签到,获得积分10
9秒前
louis完成签到,获得积分10
11秒前
西瓜完成签到 ,获得积分10
11秒前
娟娟加油完成签到 ,获得积分10
12秒前
HonestLiang完成签到,获得积分10
12秒前
YouziBa完成签到,获得积分10
13秒前
萧然完成签到,获得积分10
13秒前
14秒前
14秒前
JamesPei应助研友_892kOL采纳,获得10
15秒前
科奇应助喜洋洋采纳,获得10
17秒前
月亮褪色了完成签到 ,获得积分10
17秒前
淡然水绿完成签到,获得积分10
18秒前
一路硕博完成签到,获得积分10
19秒前
李李李完成签到,获得积分10
21秒前
Owen应助王月缶采纳,获得10
21秒前
野草完成签到,获得积分10
21秒前
神勇千万完成签到,获得积分10
23秒前
...完成签到 ,获得积分0
25秒前
小雯完成签到,获得积分10
27秒前
任性的思远完成签到 ,获得积分10
28秒前
忘崽子小拳头完成签到,获得积分10
28秒前
28秒前
Hello应助by采纳,获得10
30秒前
友好傲白完成签到,获得积分10
31秒前
jianglili完成签到,获得积分10
32秒前
快乐的纸飞机完成签到 ,获得积分10
32秒前
二二完成签到 ,获得积分10
32秒前
叫我陈老师啊完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671