Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Shouwu Guo,Chao Wang,Jing Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (2) 被引量:1
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助hbsun采纳,获得100
1秒前
笑笑丶不爱笑完成签到,获得积分10
1秒前
dr_luo完成签到,获得积分20
1秒前
路遥发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
Owen应助Hosea采纳,获得10
2秒前
陈居居发布了新的文献求助10
3秒前
吖吖草发布了新的文献求助10
3秒前
可靠的书桃应助小杨采纳,获得10
3秒前
zhaoyue发布了新的文献求助10
3秒前
callous发布了新的文献求助10
4秒前
Jasper应助游走的太阳采纳,获得10
4秒前
dr_luo发布了新的文献求助10
4秒前
5秒前
5秒前
等闲月完成签到 ,获得积分10
5秒前
6秒前
Jeffry发布了新的文献求助10
6秒前
明亮的幻竹应助小明采纳,获得10
7秒前
7秒前
7秒前
7秒前
董竹君发布了新的文献求助10
7秒前
wzy完成签到,获得积分10
8秒前
8秒前
颖宝老公完成签到,获得积分10
9秒前
九日完成签到,获得积分10
10秒前
星辰大海应助陈居居采纳,获得10
10秒前
rr发布了新的文献求助10
10秒前
10秒前
ephore应助NN采纳,获得30
11秒前
Juan发布了新的文献求助10
11秒前
希望天下0贩的0应助嗒嗒采纳,获得10
11秒前
13秒前
颖宝老公发布了新的文献求助10
13秒前
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038