亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Sheng Guo,Chao Wang,Jin Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (2) 被引量:20
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婼汐完成签到 ,获得积分10
7秒前
基质的寅博完成签到,获得积分10
14秒前
所所应助Keria采纳,获得10
22秒前
27秒前
31秒前
沉默是金发布了新的文献求助10
33秒前
33秒前
善学以致用应助板栗鸡采纳,获得10
36秒前
小白完成签到 ,获得积分10
36秒前
Keria发布了新的文献求助10
38秒前
谦让小熊猫完成签到,获得积分10
42秒前
无语的我完成签到,获得积分10
42秒前
44秒前
冷傲迎梅完成签到 ,获得积分10
48秒前
砖砖完成签到,获得积分10
54秒前
雄壮的小妞完成签到,获得积分10
1分钟前
领导范儿应助砖砖采纳,获得10
1分钟前
1分钟前
xxxhhh发布了新的文献求助10
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
1分钟前
儒雅完成签到 ,获得积分10
1分钟前
LU发布了新的文献求助10
1分钟前
1分钟前
blueskyzhi完成签到,获得积分10
1分钟前
1分钟前
沉默是金发布了新的文献求助10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
砖砖发布了新的文献求助10
2分钟前
小白完成签到 ,获得积分10
2分钟前
wanci应助xxxhhh采纳,获得10
2分钟前
昌莆完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
呆毛发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463262
求助须知:如何正确求助?哪些是违规求助? 4568010
关于积分的说明 14312303
捐赠科研通 4493894
什么是DOI,文献DOI怎么找? 2461964
邀请新用户注册赠送积分活动 1450972
关于科研通互助平台的介绍 1426184