Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Shouwu Guo,Chao Wang,Jing Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (2) 被引量:1
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Willow完成签到,获得积分10
1秒前
研研研完成签到,获得积分10
2秒前
大橙子发布了新的文献求助10
4秒前
dejiangcj完成签到 ,获得积分10
5秒前
无味完成签到,获得积分10
6秒前
大气的尔蓝完成签到,获得积分10
7秒前
科研通AI5应助普鲁卡因采纳,获得10
8秒前
略略略完成签到 ,获得积分10
10秒前
zqlxueli完成签到 ,获得积分10
14秒前
无语的断缘完成签到,获得积分10
16秒前
hdx完成签到 ,获得积分10
17秒前
健壮的涑完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
22秒前
普鲁卡因发布了新的文献求助10
22秒前
高大绝义完成签到,获得积分10
24秒前
26秒前
黄超超发布了新的文献求助10
27秒前
ZEcholy完成签到 ,获得积分20
27秒前
大橙子发布了新的文献求助10
28秒前
小幸运完成签到,获得积分10
30秒前
淡然一德完成签到,获得积分10
33秒前
咖啡豆完成签到 ,获得积分10
34秒前
35秒前
龙猫爱看书完成签到,获得积分10
35秒前
you完成签到,获得积分10
36秒前
黄超超完成签到,获得积分10
38秒前
玄音完成签到,获得积分10
39秒前
天将明完成签到 ,获得积分10
40秒前
咖啡豆发布了新的文献求助10
40秒前
普鲁卡因发布了新的文献求助10
43秒前
海孩子完成签到,获得积分10
43秒前
Ye完成签到,获得积分10
47秒前
陆浩学化学完成签到,获得积分10
48秒前
Slemon完成签到,获得积分10
49秒前
51秒前
大个应助普鲁卡因采纳,获得10
54秒前
咖啡豆发布了新的文献求助10
55秒前
意志所向完成签到,获得积分10
55秒前
《子非鱼》完成签到,获得积分10
56秒前
缓慢的甜瓜完成签到,获得积分10
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022