Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Sheng Guo,Chao Wang,Jin Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (2) 被引量:20
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助猪猪hero采纳,获得10
刚刚
1秒前
1秒前
wen完成签到,获得积分10
1秒前
1秒前
风趣飞柏发布了新的文献求助10
1秒前
hhhh发布了新的文献求助10
2秒前
3秒前
六月完成签到,获得积分10
3秒前
3秒前
君无名完成签到 ,获得积分10
4秒前
zq完成签到,获得积分10
4秒前
思源应助TSK采纳,获得10
5秒前
亓大大发布了新的文献求助10
5秒前
brick2024发布了新的文献求助10
5秒前
DG发布了新的文献求助10
5秒前
南无双完成签到,获得积分10
5秒前
诸乌发布了新的文献求助10
6秒前
科研通AI6应助zy采纳,获得10
6秒前
王晨发布了新的文献求助10
6秒前
6秒前
6秒前
CipherSage应助浅笑心柔采纳,获得10
7秒前
完美书桃发布了新的文献求助10
7秒前
dy发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
万能图书馆应助一语道破采纳,获得10
8秒前
专注的雁梅完成签到,获得积分20
8秒前
8秒前
能干的鞅完成签到,获得积分10
9秒前
溪陆发布了新的文献求助10
9秒前
9秒前
完美世界应助霜之哀伤采纳,获得10
9秒前
慕青应助zhangao采纳,获得10
10秒前
或无情完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
深情安青应助Meredith采纳,获得10
10秒前
JamesPei应助小张z采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371