Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Sheng Guo,Chao Wang,Jin Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:150 (2): 78-78 被引量:44
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Jiaxin_Wu完成签到 ,获得积分10
刚刚
刚刚
1秒前
田様应助木头人采纳,获得10
2秒前
喵喵完成签到,获得积分10
2秒前
科研通AI6.1应助wind2631采纳,获得10
2秒前
yyyyyy发布了新的文献求助10
4秒前
科目三应助乐乐乐采纳,获得10
4秒前
lyncee完成签到,获得积分10
5秒前
醒了完成签到,获得积分10
5秒前
SnowPeak7发布了新的文献求助10
5秒前
5秒前
沉默御姐完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
喵喵发布了新的文献求助10
5秒前
6秒前
星月完成签到,获得积分10
6秒前
6秒前
7秒前
小张发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
Jean_Zhao完成签到,获得积分10
7秒前
xnm完成签到,获得积分10
8秒前
过时的幻柏完成签到,获得积分10
8秒前
明理含之完成签到,获得积分10
8秒前
8秒前
尼古拉斯丨大黑完成签到,获得积分10
8秒前
星期八发布了新的文献求助20
8秒前
8秒前
chenqiumu应助amanda采纳,获得30
10秒前
10秒前
蓝海完成签到,获得积分10
10秒前
LG驳回了Akim应助
10秒前
11秒前
cswcmrji发布了新的文献求助10
11秒前
xyb完成签到,获得积分20
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751788
求助须知:如何正确求助?哪些是违规求助? 5470621
关于积分的说明 15371557
捐赠科研通 4890855
什么是DOI,文献DOI怎么找? 2630077
邀请新用户注册赠送积分活动 1578267
关于科研通互助平台的介绍 1534289