Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer

前列腺癌 特征选择 骨转移 列线图 医学 Lasso(编程语言) 接收机工作特性 特征(语言学) 人工智能 算法 转移 深度学习 磁共振成像 癌症 内科学 机器学习 肿瘤科 放射科 计算机科学 语言学 哲学 万维网
作者
Yunfeng Zhang,Chuan Zhou,Sheng Guo,Chao Wang,Jin Yang,Zhijun Yang,Rong Wang,Xu Zhang,Fenghai Zhou
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:150 (2) 被引量:20
标识
DOI:10.1007/s00432-023-05574-5
摘要

Abstract Purpose Bone metastasis is a significant contributor to morbidity and mortality in advanced prostate cancer, and early diagnosis is challenging due to its insidious onset. The use of machine learning to obtain prognostic information from pathological images has been highlighted. However, there is a limited understanding of the potential of early prediction of bone metastasis through the feature combination method from various sources. This study presents a method of integrating multimodal data to enhance the feasibility of early diagnosis of bone metastasis in prostate cancer. Methods and materials Overall, 211 patients diagnosed with prostate cancer (PCa) at Gansu Provincial Hospital between January 2017 and February 2023 were included in this study. The patients were randomized (8:2) into a training group ( n = 169) and a validation group ( n = 42). The region of interest (ROI) were segmented from the three magnetic resonance imaging (MRI) sequences (T2WI, DWI, and ADC), and pathological features were extracted from tissue sections (hematoxylin and eosin [H&E] staining, 10 × 20). A deep learning (DL) model using ResNet 50 was employed to extract deep transfer learning (DTL) features. The least absolute shrinkage and selection operator (LASSO) regression method was utilized for feature selection, feature construction, and reducing feature dimensions. Different machine learning classifiers were used to build predictive models. The performance of the models was evaluated using receiver operating characteristic curves. The net clinical benefit was assessed using decision curve analysis (DCA). The goodness of fit was evaluated using calibration curves. A joint model nomogram was eventually developed by combining clinically independent risk factors. Results The best prediction models based on DTL and pathomics features showed area under the curve (AUC) values of 0.89 (95% confidence interval [CI], 0.799–0.989) and 0.85 (95% CI, 0.714–0.989), respectively. The AUC for the best prediction model based on radiomics features and combining radiomics features, DTL features, and pathomics features were 0.86 (95% CI, 0.735–0.979) and 0.93 (95% CI, 0.854–1.000), respectively. Based on DCA and calibration curves, the model demonstrated good net clinical benefit and fit. Conclusion Multimodal radiomics and pathomics serve as valuable predictors of the risk of bone metastases in patients with primary PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰完成签到,获得积分10
1秒前
丽莉发布了新的文献求助10
3秒前
大个应助亚铁氰化钾采纳,获得10
3秒前
Wayne完成签到 ,获得积分10
5秒前
rkay完成签到,获得积分10
6秒前
嘻嘻哈哈完成签到 ,获得积分10
7秒前
灰鸽舞完成签到 ,获得积分10
10秒前
赖建琛完成签到 ,获得积分10
12秒前
水草帽完成签到 ,获得积分10
13秒前
ken131完成签到 ,获得积分0
18秒前
CipherSage应助淡然幻梦采纳,获得10
18秒前
Ava应助ewovk采纳,获得10
19秒前
水草帽完成签到 ,获得积分10
22秒前
Stone完成签到,获得积分10
22秒前
SimonShaw完成签到,获得积分10
25秒前
haochi完成签到,获得积分10
30秒前
keleboys完成签到 ,获得积分10
37秒前
刘雨森完成签到 ,获得积分10
38秒前
彩色映雁完成签到 ,获得积分10
39秒前
汪汪淬冰冰完成签到,获得积分10
39秒前
cq_2完成签到,获得积分0
39秒前
Macro完成签到 ,获得积分10
41秒前
喵喵完成签到 ,获得积分10
43秒前
Owen应助科研通管家采纳,获得10
43秒前
单小芫完成签到 ,获得积分10
44秒前
小禾一定行完成签到 ,获得积分10
45秒前
w0r1d完成签到 ,获得积分10
52秒前
知秋完成签到 ,获得积分10
54秒前
方圆完成签到 ,获得积分10
1分钟前
153266916完成签到 ,获得积分10
1分钟前
风中的向卉完成签到 ,获得积分10
1分钟前
冷傲菠萝完成签到 ,获得积分10
1分钟前
mike2012完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分0
1分钟前
chaosyw完成签到,获得积分10
1分钟前
啦啦啦啦完成签到 ,获得积分10
1分钟前
popo6150完成签到 ,获得积分10
1分钟前
friend516完成签到 ,获得积分10
1分钟前
aaronroseman完成签到,获得积分10
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5117808
求助须知:如何正确求助?哪些是违规求助? 4323935
关于积分的说明 13470888
捐赠科研通 4156676
什么是DOI,文献DOI怎么找? 2278049
邀请新用户注册赠送积分活动 1279883
关于科研通互助平台的介绍 1218362