Multi-loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia

判别式 计算机科学 人工智能 模态(人机交互) 机器学习 生成模型 功能磁共振成像 精神分裂症(面向对象编程) 生成语法 模式识别(心理学) 心理学 神经科学 程序设计语言
作者
Peilun Song,Xiuxia Yuan,Xue Lin,Xueqin Song,Y. Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2023.3337661
摘要

Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported combining multimodal data can offer complementary information for better depicting the abnormalities of SCZ. However, the existing multimodal-based methods have multiple limitations. First, most approaches cannot fully use the relationships among different modalities for the downstream tasks. Second, representing multimodal data by the modality-common and modality-specific components can improve the performance of multimodal analysis but often be ignored. Third, most methods conduct the model for classification or regression, thus a unified model is needed for finishing these tasks simultaneously. To this end, a multi-loss disentangled generative-discriminative learning (MDGDL) model was developed to tackle these issues. Specifically, using disentangled learning method, the genes and gut microbial biomarkers were represented and separated into two modality-specific vectors and one modality-common vector. Then, a generative-discriminative framework was introduced to uncover the relationships between fMRI features and these three latent vectors, further producing the attentive vectors, which can help fMRI features for the downstream tasks. To validate the performance of MDGDL, an SCZ classification task and a cognitive score regression task were conducted. Results showed the MDGDL achieved superior performance and identified the most important multimodal biomarkers for the SCZ. Our proposed model could be a supplementary approach for multimodal data analysis. Based on this method, we could analyze the SCZ by combining multimodal data, and further obtain some interesting findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JacobCheng1完成签到,获得积分10
1秒前
波波玛奇朵完成签到,获得积分10
1秒前
慕青应助NINI采纳,获得10
2秒前
2秒前
柑橘完成签到,获得积分10
2秒前
输入法完成签到,获得积分10
2秒前
蕾蕾发布了新的文献求助10
3秒前
3秒前
JacobCheng1发布了新的文献求助10
4秒前
4秒前
4秒前
Nicole发布了新的文献求助10
4秒前
思源应助jyh采纳,获得10
5秒前
www1544发布了新的文献求助10
6秒前
怕黑的灭龙关注了科研通微信公众号
6秒前
orixero应助Tantantan采纳,获得10
6秒前
传奇3应助无极道人采纳,获得10
7秒前
7秒前
李哈应助mbf采纳,获得10
7秒前
lilililili发布了新的文献求助30
8秒前
oywc应助超帅的念寒采纳,获得10
9秒前
han完成签到 ,获得积分10
9秒前
竹外桃花发布了新的文献求助20
9秒前
东北三省发布了新的文献求助10
9秒前
10秒前
OK不服气发布了新的文献求助10
10秒前
胖胖完成签到,获得积分10
10秒前
卡农完成签到,获得积分10
11秒前
科研狗发布了新的文献求助10
11秒前
wisliudj发布了新的文献求助10
11秒前
楚奇完成签到,获得积分10
12秒前
六月完成签到,获得积分10
12秒前
化龙完成签到,获得积分10
12秒前
13秒前
13秒前
花花花花发布了新的文献求助10
13秒前
徐徐完成签到,获得积分10
14秒前
14秒前
wish完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765