Multi-loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia

判别式 计算机科学 人工智能 模态(人机交互) 机器学习 生成模型 功能磁共振成像 精神分裂症(面向对象编程) 生成语法 模式识别(心理学) 心理学 神经科学 程序设计语言
作者
Peilun Song,Xiuxia Yuan,Xue Lin,Xueqin Song,Y. Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2023.3337661
摘要

Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported combining multimodal data can offer complementary information for better depicting the abnormalities of SCZ. However, the existing multimodal-based methods have multiple limitations. First, most approaches cannot fully use the relationships among different modalities for the downstream tasks. Second, representing multimodal data by the modality-common and modality-specific components can improve the performance of multimodal analysis but often be ignored. Third, most methods conduct the model for classification or regression, thus a unified model is needed for finishing these tasks simultaneously. To this end, a multi-loss disentangled generative-discriminative learning (MDGDL) model was developed to tackle these issues. Specifically, using disentangled learning method, the genes and gut microbial biomarkers were represented and separated into two modality-specific vectors and one modality-common vector. Then, a generative-discriminative framework was introduced to uncover the relationships between fMRI features and these three latent vectors, further producing the attentive vectors, which can help fMRI features for the downstream tasks. To validate the performance of MDGDL, an SCZ classification task and a cognitive score regression task were conducted. Results showed the MDGDL achieved superior performance and identified the most important multimodal biomarkers for the SCZ. Our proposed model could be a supplementary approach for multimodal data analysis. Based on this method, we could analyze the SCZ by combining multimodal data, and further obtain some interesting findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
聪慧雪糕发布了新的文献求助10
4秒前
科研通AI5应助粒子采纳,获得30
5秒前
5秒前
8秒前
一拳一个小欧阳完成签到 ,获得积分10
8秒前
桐桐应助聪慧雪糕采纳,获得30
9秒前
9秒前
10秒前
66aaron66发布了新的文献求助10
12秒前
华仔应助Su采纳,获得10
12秒前
Juggu发布了新的文献求助10
14秒前
知更鸟发布了新的文献求助10
14秒前
为你钟情完成签到 ,获得积分10
14秒前
20秒前
勇敢虎虎完成签到,获得积分10
21秒前
qiu发布了新的文献求助10
22秒前
22秒前
X_Nano完成签到,获得积分10
24秒前
小新小新完成签到 ,获得积分10
25秒前
精灵大夫发布了新的文献求助20
25秒前
ddd发布了新的文献求助10
26秒前
赘婿应助科研通管家采纳,获得10
28秒前
斯文败类应助科研通管家采纳,获得10
28秒前
李健应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
llls发布了新的文献求助10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
29秒前
zho应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
fwstu应助知更鸟采纳,获得10
30秒前
cdercder应助xf采纳,获得10
32秒前
lisa完成签到 ,获得积分10
32秒前
Ali完成签到,获得积分10
32秒前
Hello应助neilqin采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3675273
求助须知:如何正确求助?哪些是违规求助? 3230125
关于积分的说明 9788992
捐赠科研通 2940956
什么是DOI,文献DOI怎么找? 1612268
邀请新用户注册赠送积分活动 761065
科研通“疑难数据库(出版商)”最低求助积分说明 736596