亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia

判别式 计算机科学 人工智能 模态(人机交互) 机器学习 生成模型 功能磁共振成像 精神分裂症(面向对象编程) 生成语法 模式识别(心理学) 心理学 神经科学 程序设计语言
作者
Peilun Song,Xiuxia Yuan,Xue Lin,Xueqin Song,Y. Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2023.3337661
摘要

Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported combining multimodal data can offer complementary information for better depicting the abnormalities of SCZ. However, the existing multimodal-based methods have multiple limitations. First, most approaches cannot fully use the relationships among different modalities for the downstream tasks. Second, representing multimodal data by the modality-common and modality-specific components can improve the performance of multimodal analysis but often be ignored. Third, most methods conduct the model for classification or regression, thus a unified model is needed for finishing these tasks simultaneously. To this end, a multi-loss disentangled generative-discriminative learning (MDGDL) model was developed to tackle these issues. Specifically, using disentangled learning method, the genes and gut microbial biomarkers were represented and separated into two modality-specific vectors and one modality-common vector. Then, a generative-discriminative framework was introduced to uncover the relationships between fMRI features and these three latent vectors, further producing the attentive vectors, which can help fMRI features for the downstream tasks. To validate the performance of MDGDL, an SCZ classification task and a cognitive score regression task were conducted. Results showed the MDGDL achieved superior performance and identified the most important multimodal biomarkers for the SCZ. Our proposed model could be a supplementary approach for multimodal data analysis. Based on this method, we could analyze the SCZ by combining multimodal data, and further obtain some interesting findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
一只发布了新的文献求助10
7秒前
9秒前
欣欣子完成签到,获得积分10
9秒前
yuyiyi完成签到,获得积分10
12秒前
sunstar完成签到,获得积分20
13秒前
15秒前
susu_完成签到,获得积分10
16秒前
yxl完成签到,获得积分10
16秒前
可耐的盈完成签到,获得积分10
20秒前
23秒前
绿毛水怪完成签到,获得积分10
24秒前
24秒前
在水一方应助搞什么科研采纳,获得10
25秒前
lsc完成签到,获得积分10
27秒前
隐形曼青应助白华苍松采纳,获得10
29秒前
小fei完成签到,获得积分10
31秒前
32秒前
麻辣薯条完成签到,获得积分10
34秒前
时尚身影完成签到,获得积分10
37秒前
an慧儿发布了新的文献求助10
39秒前
41秒前
流苏完成签到,获得积分0
41秒前
流苏2完成签到,获得积分10
45秒前
53秒前
量子星尘发布了新的文献求助10
1分钟前
徐per爱豆完成签到 ,获得积分10
1分钟前
1分钟前
渺渺未来星完成签到 ,获得积分20
1分钟前
1分钟前
可乐完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
Andrewlabeth完成签到,获得积分10
2分钟前
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
an慧儿发布了新的文献求助10
2分钟前
连安阳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489722
捐赠科研通 4539189
什么是DOI,文献DOI怎么找? 2487356
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442032