Multi-loss Disentangled Generative-Discriminative Learning for Multimodal Representation in Schizophrenia

判别式 计算机科学 人工智能 模态(人机交互) 机器学习 生成模型 功能磁共振成像 精神分裂症(面向对象编程) 生成语法 模式识别(心理学) 心理学 神经科学 程序设计语言
作者
Peilun Song,Xiuxia Yuan,Xue Lin,Xueqin Song,Y. Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2023.3337661
摘要

Schizophrenia (SCZ) is a multifactorial mental illness, thus it will be beneficial for exploring this disease using multimodal data, including functional magnetic resonance imaging (fMRI), genes, and the gut microbiome. Previous studies reported combining multimodal data can offer complementary information for better depicting the abnormalities of SCZ. However, the existing multimodal-based methods have multiple limitations. First, most approaches cannot fully use the relationships among different modalities for the downstream tasks. Second, representing multimodal data by the modality-common and modality-specific components can improve the performance of multimodal analysis but often be ignored. Third, most methods conduct the model for classification or regression, thus a unified model is needed for finishing these tasks simultaneously. To this end, a multi-loss disentangled generative-discriminative learning (MDGDL) model was developed to tackle these issues. Specifically, using disentangled learning method, the genes and gut microbial biomarkers were represented and separated into two modality-specific vectors and one modality-common vector. Then, a generative-discriminative framework was introduced to uncover the relationships between fMRI features and these three latent vectors, further producing the attentive vectors, which can help fMRI features for the downstream tasks. To validate the performance of MDGDL, an SCZ classification task and a cognitive score regression task were conducted. Results showed the MDGDL achieved superior performance and identified the most important multimodal biomarkers for the SCZ. Our proposed model could be a supplementary approach for multimodal data analysis. Based on this method, we could analyze the SCZ by combining multimodal data, and further obtain some interesting findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助zhaosangongzi采纳,获得10
刚刚
1秒前
heiniu完成签到,获得积分10
1秒前
1秒前
小蚊子发布了新的文献求助10
1秒前
2秒前
2秒前
lei.qin发布了新的文献求助20
2秒前
个性笑白完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
guozizi发布了新的文献求助30
3秒前
1111111111发布了新的文献求助10
4秒前
bubble发布了新的文献求助30
4秒前
Lucas应助冷静的铅笔采纳,获得10
4秒前
balabal发布了新的文献求助10
4秒前
4秒前
Lucas应助zhuzihao采纳,获得10
4秒前
飞天817发布了新的文献求助10
4秒前
平常的逍遥完成签到,获得积分10
4秒前
赘婿应助肥亮采纳,获得10
5秒前
次次发布了新的文献求助10
5秒前
yimu发布了新的文献求助10
6秒前
哒哒哒发布了新的文献求助50
7秒前
heiniu发布了新的文献求助10
7秒前
汉堡包应助小蚊子采纳,获得10
7秒前
ayayaya发布了新的文献求助10
8秒前
一昂完成签到,获得积分10
8秒前
sakegeda发布了新的文献求助10
8秒前
隐形曼青应助羊羊羊采纳,获得10
8秒前
8秒前
ugh完成签到 ,获得积分10
8秒前
CipherSage应助liufang采纳,获得10
9秒前
昔年完成签到 ,获得积分0
9秒前
Hello应助温柔的幻露采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979196
求助须知:如何正确求助?哪些是违规求助? 3523110
关于积分的说明 11216298
捐赠科研通 3260559
什么是DOI,文献DOI怎么找? 1800098
邀请新用户注册赠送积分活动 878823
科研通“疑难数据库(出版商)”最低求助积分说明 807092