CO2-Based Block Copolymers: Present and Future Designs

共聚物 单体 环氧化物 聚合 玻璃化转变 催化作用 脂环化合物 解聚 高分子化学 聚合物 化学 有机化学 材料科学
作者
Yao‐Yao Zhang,Guang‐Peng Wu,Donald J. Darensbourg
出处
期刊:Trends in chemistry [Elsevier]
卷期号:2 (8): 750-763 被引量:103
标识
DOI:10.1016/j.trechm.2020.05.002
摘要

Polycarbonates derived in part from carbon dioxide are provided by the completely alternating incorporation of epoxide and CO2 molecules into a growing polymer chain. This process is an alternative to the step-growth, environmentally unfavorable pathway involving diols and phosgene. A major challenge in synthesizing block polymers is the ability to chemoselectively control the incorporation of monomers from the polymerization of a mixed monomer feedstock. This ability to direct the polymer sequences of course determines the polymer structure and thermal/mechanical properties. Through current advances that have been developed for the synthesis of well-defined CO2-based block copolymers, it is possible to overcome some of the weaknesses of polycarbonates derived from both aliphatic and alicyclic epoxides (e.g., low glass transition temperature and brittleness). The utilization of carbon dioxide (CO2) as a monomer for copolymerization with three-membered cyclic ethers, also known as oxiranes or epoxides, has received much renewed interest due to the need for degradable polymeric materials derived from renewable resources. Since the early discovery of the catalytic coupling of CO2 and oxiranes to afford polycarbonates, the area has progressed significantly over the 50 succeeding years. Herein, we describe the currently well-established catalyzed copolymerization process of oxiranes and carbon dioxide utilizing homogeneous metal catalysts. Pertinent to the commercial success of this process is the presence of rapid and reversible chain-transfer reactions that occur in the presence of protic impurities or additives leading to the formation of macropolyols. The focus of this review is to summarize the various synthetic strategies for the production of designer block copolymers for various applications in material science and biomedicine. The utilization of carbon dioxide (CO2) as a monomer for copolymerization with three-membered cyclic ethers, also known as oxiranes or epoxides, has received much renewed interest due to the need for degradable polymeric materials derived from renewable resources. Since the early discovery of the catalytic coupling of CO2 and oxiranes to afford polycarbonates, the area has progressed significantly over the 50 succeeding years. Herein, we describe the currently well-established catalyzed copolymerization process of oxiranes and carbon dioxide utilizing homogeneous metal catalysts. Pertinent to the commercial success of this process is the presence of rapid and reversible chain-transfer reactions that occur in the presence of protic impurities or additives leading to the formation of macropolyols. The focus of this review is to summarize the various synthetic strategies for the production of designer block copolymers for various applications in material science and biomedicine. the purity of block copolymers (i.e., the mole or mass fraction of block copolymers relative to involved homopolymer impurities). a polymerization of the monomer is performed by the propagating species that switches back and forth between the active and dormant states. a CO2 molecule inserted into the M–OR (M, metal; R, alkoxy group) bond forms a growing metallic carbonate (M–OCO–OR) polymer chain. an effective way of altering the physicochemical properties of a polymer via the incorporation of two/three monomers during chain-growth polymerization. ring opening of an epoxide (e.g., PO) occurs at either its methylene carbon or methine carbon via nucleophile attack. a living radical polymerization technique for macromolecular design based on the interchange of xanthates. an emerging polymerization strategy combining ROP and copolymerization to incorporate different monomers into the main chain of a predesigned polymer. for racemic epoxide, the polymerization proceeds by incorporating R-configuration epoxides or S-configuration counterparts; for mesomeric monomer, ring opening occurs at its R-configuration carbon or the S-configuration carbon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高哲丝发布了新的文献求助10
2秒前
3秒前
wangkai030709发布了新的文献求助10
3秒前
4秒前
852应助不打腮红只打哈欠采纳,获得10
5秒前
路纹婷完成签到,获得积分10
5秒前
可爱绮发布了新的文献求助10
5秒前
刚睡醒发布了新的文献求助10
5秒前
sunny发布了新的文献求助10
8秒前
早日毕业完成签到 ,获得积分10
9秒前
静心完成签到 ,获得积分10
9秒前
11秒前
自有龙骧完成签到 ,获得积分10
11秒前
一发必中完成签到 ,获得积分10
11秒前
11秒前
糟糕的沂完成签到,获得积分20
12秒前
李爱国应助mm采纳,获得10
12秒前
韩梅完成签到,获得积分10
13秒前
小呆鹿完成签到,获得积分10
15秒前
旺旺发布了新的文献求助10
16秒前
糟糕的沂发布了新的文献求助10
18秒前
脑洞疼应助安静绯采纳,获得10
19秒前
19秒前
执着的寄松完成签到,获得积分10
19秒前
科研通AI6应助leolee采纳,获得30
19秒前
20秒前
21秒前
25秒前
25秒前
yyy发布了新的文献求助10
25秒前
冷酷男人发布了新的文献求助10
26秒前
26秒前
28秒前
32秒前
hhh完成签到,获得积分10
32秒前
认真沛珊完成签到,获得积分10
33秒前
未雨绸缪发布了新的文献求助10
35秒前
35秒前
希望天下0贩的0应助OVO采纳,获得10
36秒前
MXX完成签到 ,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5559974
求助须知:如何正确求助?哪些是违规求助? 4645042
关于积分的说明 14674272
捐赠科研通 4586202
什么是DOI,文献DOI怎么找? 2516308
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841