A nanoparticle trapped and cooled Cooling massive particles to the quantum ground state allows fundamental tests of quantum mechanics to be made; it would provide an experimental probe of the boundary between the classical and quantum worlds. Delić et al. laser-cooled an optically trapped solid-state object (a ∼150-nanometer-diameter silic a nanoparticle) into its quantum ground state of motion starting from room temperature. Because the object is levitated using optical forces, the experimental configuration can be switched to free fall, thereby providing a test bed for several macroscopic quantum experiments. Science , this issue p. 892