微塑料
河口
沉积物
环境科学
环境化学
水槽(地理)
污染物
海洋学
生态学
化学
地质学
生物
地理
地图学
古生物学
作者
Qiujin Xu,Ronglian Xing,Mingdong Sun,Yiyao Gao,Lihui An
标识
DOI:10.1016/j.scitotenv.2020.139025
摘要
Microplastics are an emerging pollutant of international concern due to its wide distribution through various pathways. Estuary is an important pathway for land microplastics to enter into the oceans by rivers. In this study, we hypothesized that microplastics would sink into estuary sediment during diffusion and transmission from river before entering into the sea, which results in higher accumulation of microplastics in proximity to river-estuary than in the oceans. In order to demonstrate this hypothesis, sediment samples were collected from an estuary and its two main inputting rivers and the microplastics in these samples were analyzed. In the collected sediment samples, 19 types of polymers, including the three most common polymers (polyethylene, polyethylene terephthalate, and poly(propylene:ethylene)), were identified and confirmed by FT-IR. Eight types of polymers were consistently detected in all samples, while 11 types of polymers were occasionally found in some samples. These microplastics exhibited four shapes and their percentages followed the high-to-low order of film, fragment, fiber and pellet. A relatively lower abundance of microplastics was found in river sediments from Shuangtaizi River with an average of 170 ± 96 particles/kg d.w., compared to that from Daliao River with an average of 237 ± 129 particles/kg d.w., but it was higher than that from Liaohe Estuary with an average of 120 ± 46 particles/kg d.w. Furthermore, the highest concentration of microplastics was found at the mouth of rivers, showing high accumulation where the freshwater and saltwater meet. Results from this study, including the abundance, characteristics and spatial distribution of microplastic pollution in sediments from an interconnected river-estuary system, revealed the fate and distribution of microplastics in the river and estuary environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI